CHAPTER 8
 FLEXIBLE BUDGETS, OVERHEAD COST VARIANCES, AND MANAGEMENT CONTROL

8-1 Effective planning of variable overhead costs involves:

1. Planning to undertake only those variable overhead activities that add value for customers using the product or service, and
2. Planning to use the drivers of costs in those activities in the most efficient way.

8-2 At the start of an accounting period, a larger percentage of fixed overhead costs are locked-in than is the case with variable overhead costs. When planning fixed overhead costs, a company must choose the appropriate level of capacity or investment that will benefit the company over a long time. This is a strategic decision.

8-3 The key differences are how direct costs are traced to a cost object and how indirect costs are allocated to a cost object:

	Actual Costing	Standard Costing
Direct costs	Actual prices \times Actual inputs used	Standard prices \times Standard inputs allowed for actual output
Indirect costs	Actual indirect rate \times Actual inputs used	Standard indirect cost-allocation rate \times Standard quantity of cost-allocation base allowed for actual output

8-4 Steps in developing a budgeted variable-overhead cost rate are

1. Choose the period to be used for the budget.
2. Select the cost-allocation bases to use in allocating variable overhead costs to the output produced.
3. Identify the variable overhead costs associated with each cost-allocation base.
4. Compute the rate per unit of each cost-allocation base used to allocate variable overhead costs to output produced.

8-5 Two factors affect the spending variance for variable manufacturing overhead:
a. price changes of individual inputs (such as energy and indirect materials) included in variable overhead relative to budgeted prices
b. percentage change in the actual quantity used of individual items included in variable overhead cost pool, relative to the percentage change in the quantity of the cost driver of the variable overhead cost pool

8-6 Possible reasons for a favorable variable-overhead efficiency variance include:

- Workers are more skillful in using machines than budgeted.
- Production scheduler was able to schedule jobs better than budgeted, resulting in lower-than-budgeted machine-hours.
- Machines operated with fewer slowdowns than budgeted.
- Machine time standards were overly lenient.

8-7 A direct materials efficiency variance indicates whether more or less direct materials were used than was budgeted for the actual output achieved. A variable manufacturing overhead efficiency variance indicates whether more or less of the chosen allocation base was used than was budgeted for the actual output achieved.

8-8 Steps in developing a budgeted fixed-overhead rate are

1. Choose the period to use for the budget.
2. Select the cost-allocation base to use in allocating fixed overhead costs to output produced.
3. Identify the fixed-overhead costs associated with each cost-allocation base.
4. Compute the rate per unit of each cost-allocation base used to allocate fixed overhead costs to output produced.

8-9 The relationship for fixed-manufacturing overhead variances is:

There is never an efficiency variance for fixed overhead because managers cannot be more or less efficient in dealing with an amount that is fixed regardless of the output level. The result is that the flexible-budget variance amount is the same as the spending variance for fixedmanufacturing overhead.

8-10 For planning and control purposes, fixed overhead costs are a lump sum amount that is not controlled on a per-unit basis. In contrast, for inventory costing purposes, fixed overhead costs are allocated to products on a per-unit basis.

8-11 An important caveat is what change in selling price might have been necessary to attain the level of sales assumed in the denominator of the fixed manufacturing overhead rate. For example, the entry of a new low-price competitor may have reduced demand below the denominator level if the budgeted selling price was maintained. An unfavorable productionvolume variance may be small relative to the selling-price variance had prices been dropped to attain the denominator level of unit sales.

8-12 A strong case can be made for writing off an unfavorable production-volume variance to cost of goods sold. The alternative is prorating it among inventories and cost of goods sold, but this would "penalize" the units produced (and in inventory) for the cost of unused capacity, i.e., for the units not produced. But, if we take the view that the denominator level is a "soft" number-i.e., it is only an estimate, and it is never expected to be reached exactly-then it makes more sense to prorate the production volume variance-whether favorable or not-among the inventory stock and cost of goods sold. Prorating a favorable variance is also more conservative: It results in a lower operating income than if the favorable variance had all been
written off to cost of goods sold. Finally, prorating also dampens the efficacy of any steps taken by company management to manage operating income through manipulation of the production volume variance. In sum, a production-volume variance need not always be written off to cost of goods sold.

8-13 The four variances are

- Variable manufacturing overhead costs
- spending variance
- efficiency variance
- Fixed manufacturing overhead costs
- spending variance
- production-volume variance

8-14 Interdependencies among the variances could arise for the spending and efficiency variances. For example, if the chosen allocation base for the variable overhead efficiency variance is only one of several cost drivers, the variable overhead spending variance will include the effect of the other cost drivers. As a second example, interdependencies can be induced when there are misclassifications of costs as fixed when they are variable and vice versa.

8-15 Flexible-budget variance analysis can be used in the control of costs in an activity area by isolating spending and efficiency variances at different levels in the cost hierarchy. For example, an analysis of batch costs can show the price and efficiency variances from being able to use longer production runs in each batch relative to the batch size assumed in the flexible budget.

8-16 (20 min.) Variable manufacturing overhead, variance analysis.

1. Variable Manufacturing Overhead Variance Analysis for Esquire Clothing for June 2014

2. Esquire had a favorable spending variance of $\$ 2,268$ because the actual variable overhead rate was $\$ 11.50$ per direct manufacturing labor-hour versus $\$ 12$ budgeted. It had an unfavorable
efficiency variance of $\$ 2,592 \mathrm{U}$ because each suit averaged 4.2 labor-hours (4,536 hours $\div 1,080$ suits) versus 4.0 budgeted labor-hours.

8-17 (20 min.) Fixed-manufacturing overhead, variance analysis (continuation of 8-16).

$$
\begin{aligned}
1 \& 2 . & \begin{array}{c}
\text { Budgeted fixed overhead } \\
\text { rate per unit of } \\
\text { allocation base }
\end{array} \\
& =\frac{\$ 62,400}{1,040 \times 4} \\
& =\frac{\$ 62,400}{4,160} \\
& =\$ 15 \text { per hour }
\end{aligned}
$$

Fixed Manufacturing Overhead Variance Analysis for Esquire Clothing for June 2014

Actual Costs Incurred (1)	Same Budgeted Lump Sum (as in Static Budget) Regardless of Output Level (2)	Flexible Budget: Same Budgeted Lump Sum (as in Static Budget) Regardless of Output Level (3)	Allocated: Budgeted Input Qty. Allowed for Actual Output \times Budgeted Rate (4)
\$63,916	\$62,400	\$62,400	$\begin{gathered} (4 \times 1,080 \times \$ 15) \\ \$ 64,800 \end{gathered}$
4	16 U -	4 \$2,4	4
Spending variance Never		iance Production-volume variance	
4	\$1,516 U	1 \$2,	F

The fixed manufacturing overhead spending variance and the fixed manufacturing flexible budget variance are the same- $\$ 1,516 \mathrm{U}$. Esquire spent $\$ 1,516$ more than the $\$ 62,400$ budgeted amount for June 2014.

The production-volume variance is $\$ 2,400 \mathrm{~F}$. This arises because Esquire utilized its capacity more intensively than budgeted (the actual production of 1,080 suits exceeds the budgeted 1,040 suits). This results in overallocated fixed manufacturing overhead of $\$ 2,400(4 \times$ $40 \times \$ 15)$. Esquire would want to understand the reasons for a favorable production-volume variance. Is the market growing? Is Esquire gaining market share? Will Esquire need to add capacity?

8-18 (30 min.) Variable manufacturing overhead variance analysis.

1. Denominator level $=(3,200,000 \times 0.02$ hours $)=64,000$ hours

2.	Actual Results	Flexible Budget Amounts
1. Output units (baguettes)	$2,800,000$	$2,800,000$
2. Direct manufacturing labor-hours	50,400	$56,000^{\mathrm{a}}$
3. Labor-hours per output unit $(2 \div 1)$	0.018	0.020
4. Variable manuf. overhead (MOH) costs	$\$ 680,400$	$\$ 560,000$
5. Variable MOH per labor-hour $(4 \div 2)$	$\$ 13.50$	$\$ 10$
6. Variable MOH per output unit $(4 \div 1)$	$\$ 0.243$	$\$ 0.200$

${ }^{2} 2,800,000 \times 0.020=56,000$ hours
Variable Manufacturing Overhead Variance Analysis for French Bread Company for 2014:

Actual Costs Incurred Actual Input Qty. \times Actual Rate (1)	Actual Input Qty. \times Budgeted Rate (2)	Flexible Budget: Budgeted Input Qty. Allowed for Actual Output \times Budgeted Rate (3)	Allocated: Budgeted Input Qty. Allowed for Actual Output \times Budgeted Rate (4)
(50,400 \times \$13.50)	(50,400 \times \$10)	(56,000 \times \$10)	(56,000 \times \$10)
\$680,400	\$504,000	\$560,000	\$560,000
$\$ 176,4$	$\begin{array}{l\|l} & 4 \\ 0 \mathrm{U} & \$ 56, \\ \hline \end{array}$		
$\begin{array}{\|c\|c} \text { Spending variance } \quad \text { Efficiency variance } & \text { Never a variance } \\ \$ 120,400 \mathrm{U} & \\ \hline \end{array}$			

3. Spending variance of $\$ 176,400 \mathrm{U}$. It is unfavorable because variable manufacturing overhead was 35 percent higher than planned. A possible explanation could be an increase in energy rates relative to the rate per standard labor-hour assumed in the flexible budget.

Efficiency variance of $\$ 56,000 \mathrm{~F}$. It is favorable because the actual number of direct manufacturing labor-hours required was lower than the number of hours in the flexible budget. Labor was more efficient in producing the baguettes than management had anticipated in the budget. This could occur because of improved morale in the company, which could result from an increase in wages or an improvement in the compensation scheme.

Flexible-budget variance of $\$ 120,400 \mathrm{U}$. It is unfavorable because the favorable efficiency variance was not large enough to compensate for the large unfavorable spending variance.

8-19 (30 min.) Fixed manufacturing overhead variance analysis (continuation of 8-18).

1. Budgeted standard direct manufacturing labor used $=0.02$ per baguette

Budgeted output $=3,200,000$ baguettes
Budgeted standard direct manufacturing labor-hours

$$
\begin{aligned}
& =3,200,000 \times 0.02 \\
& =64,000 \text { hours }
\end{aligned}
$$

Budgeted fixed manufacturing overhead costs

$$
=64,000 \times \$ 4.00 \text { per hour }
$$

$$
=\$ 256,000
$$

Actual output $=2,800,000$ baguettes
Allocated fixed manufacturing overhead

$$
\begin{aligned}
& =2,800,000 \times 0.02 \times \$ 4 \\
& =\$ 224,000
\end{aligned}
$$

Fixed Manufacturing Overhead Variance Analysis for French Bread Company for 2014

2. The fixed manufacturing overhead is underallocated by $\$ 48,000$.
3. The production-volume variance of $\$ 32,000 \mathrm{U}$ captures the difference between the budgeted $3,200,0000$ baguettes and the lower actual $2,800,000$ baguettes produced-the fixed cost capacity not used. The spending variance of $\$ 16,000 \mathrm{U}$ means that the actual aggregate of fixed costs $(\$ 272,000)$ exceeds the budget amount $(\$ 256,000)$. For example, monthly leasing rates for baguette-making machines may have increased above those in the budget for 2014.

8-20 (30-40 min.) Manufacturing overhead, variance analysis.

1. The summary information is:

The Principles Corporation (June 2014)	Actual	Flexible Budget	Static Budget
Outputs units (number of assembled units)	225	225	110
Hours of assembly time	360	450	220^{a}
Assembly hours per unit	1.60^{b}	2.00	2.00
Variable mfg. overhead cost per hour of assembly time	$\$ 33.15^{\mathrm{d}}$	$\$ 32.00$	$\$ 32.00$
Variable mfg. overhead costs	$\$ 11,933$	$\$ 14,400^{\mathrm{e}}$	$\$ 7,040^{\mathrm{f}}$
Fixed mfg. overhead costs	$\$ 12,180$	$\$ 10,780$	$\$ 10,780$
Fixed mfg. overhead costs per hour of assembly time	$\$ 33.83^{\mathrm{g}}$		$\$ 49.00^{\mathrm{h}}$

${ }^{\text {a }} 110$ units $\times 2$ assembly hours per unit $=220$ hours
${ }^{\mathrm{b}} 360$ hours $\div 225$ units $=1.60$ assembly hours per unit
${ }^{c} 225$ units $\times 2$ assembly hours per unit $=450$ hours
${ }^{\mathrm{d}} \$ 11,933 \div 360$ assembly hours $=\$ 33.15$ per assembly hour
${ }^{\mathrm{e}} 450$ assembly hours $\times \$ 32$ per assembly hour $=\$ 14,400$
${ }^{\mathrm{f}} 220$ assembly hours $\times \$ 32$ per assembly hour $=\$ 7,040$
${ }^{\mathrm{g}} \$ 12,180 \div 360$ assembly hours $=\$ 33.83$ per assembly hour
${ }^{\mathrm{h}} \$ 10,780 \div 220$ assembly hours $=\$ 49$ per assembly hour

The summary analysis is:

	Spending Variance	Efficiency Variance	Production-Volume Variance
Variable Manufacturing Overhead	$\$ 413 \mathrm{U}$	$\$ 2,880 \mathrm{~F}$	Never a variance
Fixed Manufacturing Overhead	$\$ 1,400 \mathrm{U}$	Never a variance	$\$ 11,270 \mathrm{~F}$

2. Variable Manufacturing Costs and Variances

a. Variable Manufacturing Overhead Control	11,933	
\quad Accounts Payable Control and various other accounts		11,933
To record actual variable manufacturing overhead costs		
incurred.		

b. Work-in-Process Control 14,400

Variable Manufacturing Overhead Allocated
14,400
To record variable manufacturing overhead allocated.
c. Variable Manufacturing Overhead Allocated

14,400
Variable Manufacturing Overhead Spending Variance
413
Variable Manufacturing Overhead Control
11,933
Variable Manufacturing Overhead Efficiency Variance
To isolate variances for the accounting period.
d. Variable Manufacturing Overhead Efficiency Variance 2,880

Variable Manufacturing Overhead Spending Variance
413
Cost of Goods Sold
To write off variable manufacturing overhead variances to cost of goods sold.

Fixed Manufacturing Costs and Variances

a. Fixed Manufacturing Overhead Control 12,180Salaries Payable, Acc. Depreciation, various other accounts12,180To record actual fixed manufacturing overhead costs incurred.
b. Work-in-Process Control 22,050Fixed Manufacturing Overhead Allocated22,050To record fixed manufacturing overhead allocated.
c. Fixed Manufacturing Overhead Allocated 22,050
Fixed Manufacturing Overhead Spending Variance 1,400
Fixed Manufacturing Overhead Production-Volume Variance 11,270
Fixed Manufacturing Overhead Control 12,180To isolate variances for the accounting period.
d. Fixed Manufacturing Overhead Production-Volume Variance 11,270
Fixed Manufacturing Overhead Spending Variance 1,400
Cost of Goods Sold 9,870

To write off fixed manufacturing overhead variances to cost of goods sold.
3. Planning and control of variable manufacturing overhead costs have both a long-run and a short-run focus. It involves Principles planning to undertake only value-added overhead activities (a long-run view) and then managing the cost drivers of those activities in the most efficient way (a short-run view). Planning and control of fixed manufacturing overhead costs at Principles have primarily a long-run focus. It involves undertaking only value-added fixedoverhead activities for a budgeted level of output. Principles make most of the key decisions that determine the level of fixed-overhead costs at the start of the accounting period.

8-21 (10-15 min.) 4-variance analysis, fill in the blanks.

1. Spending variance
2. Efficiency variance
3. Production-volume variance
4. Flexible-budget variance
5. Underallocated (overallocated) MOH

Variable		Fixed
2200 U		$\$ 4,600 \mathrm{U}$
$2,200 \mathrm{~F}$		NEVER
NEVER		$1,200 \mathrm{~F}$
$2,000 \mathrm{~F}$		$4,600 \mathrm{U}$
$2,000 \mathrm{~F}$		$3,400 \mathrm{U}$

These relationships could be presented in the same way as in Exhibit 8-4.

	Actual Costs Incurred (1)	Actual Input Qty. \times Budgeted Rate (2)	Flexible Budget: Budgeted Input Qty. Allowed for Actual Output \times Budgeted Rate (3)	Allocated: Budgeted Input Qty. Allowed for Actual Output \times Budgeted Rate (4)
Variable MOH	\$31,000	\$30,800	\$33,000	\$33,000
		$\mathrm{OOU} \quad \stackrel{\uparrow}{ }$	$200 \mathrm{~F}$	\uparrow
		$\begin{array}{r} \text { g variance } \quad \text { Effic } \\ \$ 2,000 \mathrm{~F} \\ \hline \end{array}$		variance
		Flexible-budget v	 000 F Never	ariance
		Overallocat (Total variab	variable overhead overhead variance)	

An overview of the four overhead variances is:

4-Variance Analysis	Spending Variance	Efficiency Variance	
Variable Overhead	$\$ 200 \mathrm{U}$	Production- Volume Variance	
Fixed Overhead	$\$ 4,600 \mathrm{U}$	Never a variance	$\$ 1,200 \mathrm{~F}$

8-22 (20-30 min.) Straightforward 4-variance overhead analysis.

1. The budget for fixed manufacturing overhead is 4,000 units $\times 6$ machine-hours $\times \$ 15$ machine-hours/unit $=\$ 360,000$.

An overview of the 4 -variance analysis is:

4-Variance Analysis	Spending Variance	Efficiency Variance	Production- Volume Variance
Variable	$\$ 17,800 \mathrm{U}$	$\$ 16,000 \mathrm{U}$	Never a Variance
Manufacturing Overhead			

Fixed
Manufacturing $\quad \$ 13,000 \mathrm{U} \quad$ Never a Variance $\$ 36,000$ F
Overhead
Solution Exhibit 8-22 has details of these variances.
A detailed comparison of actual and flexible budgeted amounts is:

	Actual	Flexible Budget
Output units (auto parts)	4,400	4,400
Allocation base (machine-hours)	28,400	$26,400^{\mathrm{a}}$
Allocation base per output unit	6.45^{b}	6.00
Variable MOH	$\$ 245,000$	$\$ 211,200^{\mathrm{c}}$
Variable MOH per hour	$\$ 8.63^{\mathrm{d}}$	$\$ 8.00$
Fixed MOH	$\$ 373,000$	$\$ 360,000^{\mathrm{e}}$
Fixed MOH per hour	$\$ 13.13^{\mathrm{f}}$	-

${ }^{\mathrm{a}} 4,400$ units $\times 6.00$ machine-hours/unit $=26,400$ machine-hours
${ }^{\mathrm{b}} 28,400 \div 4,400=6.45$ machine-hours per unit
${ }^{\mathrm{c}} 4,400$ units $\times 6.00$ machine-hours per unit $\times \$ 8.00$ per machine-hour $=\$ 211,200$
${ }^{\mathrm{d}} \$ 245,000 \div 28,400=\$ 8.63$
${ }^{\mathrm{e}} 4,000$ units $\times 6.00$ machine-hours per unit $\times \$ 15$ per machine-hour $=\$ 360,000$
${ }^{\mathrm{f}} \$ 373,000 \div 28,400=\$ 13.13$

2.Variable Manufacturing Overhead Control Accounts Payable Control and other accounts	245,000	
Work-in-Process Control		245,000
Variable Manufacturing Overhead Allocated	211,200	
Variable Manufacturing Overhead Allocated	211,200	
Variable Manufacturing Overhead Spending Variance	17,800	
Variable Manufacturing Overhead Efficiency Variance	16,000	245,000
Variable Manufacturing Overhead Control		
Fixed Manufacturing Overhead Control	373,000	
Wages Payable Control, Accumulated Depreciation		373,000
Control, etc.	396,000	396,000
Work-in-Process Control		
Fixed Manufacturing Overhead Allocated	396,000	13,000

3. Individual fixed manufacturing overhead items are not usually affected very much by day-to-day control. Instead, they are controlled periodically through planning decisions and budgeting procedures that may sometimes have horizons covering six months or a year (for example, management salaries) and sometimes covering many years (for example, long-term leases and depreciation on plant and equipment).
4. The fixed overhead spending variance is caused by the actual realization of fixed costs differing from the budgeted amounts. Some fixed costs are known because they are contractually specified, such as rent or insurance, although if the rental or insurance contract expires during the year, the fixed amount can change. Other fixed costs are estimated, such as the cost of managerial salaries, which may depend on bonuses and other payments not known at the beginning of the period. In this example, the spending variance is unfavorable, so actual FOH is greater than the budgeted amount of FOH .

The fixed overhead production volume variance is caused by production being over or under expected capacity. You may be under capacity when demand drops from expected levels or if there are problems with production. Over capacity is usually driven by favorable demand shocks or a desire to increase inventories. The fact that there is a favorable volume variance indicates that production exceeded the expected level of output (4,400 units actual relative to a denominator level of 4,000 output units).

SOLUTION EXHIBIT 8-22

Overallocated fixed overhead
(Total fixed overhead variance)

8-23 (30-40 min.) Straightforward coverage of manufacturing overhead, standardcosting system.

1. Solution Exhibit 8-23 shows the computations. Summary details are:

	Actual	Flexible Budget
Output units	65,500	65,500
Allocation base (machine-hours)	76,400	$78,600^{\mathrm{a}}$
Allocation base per output unit	1.17^{b}	1.20^{c}
Variable MOH	$\$ 618,840$	$\$ 628,800^{\mathrm{d}}$
Variable MOH per hour	$\$ 8.92^{\mathrm{d}}$	$\$ 8.00$
Fixed MOH	$\$ 145,790^{\mathrm{e}}$	$\$ 144,000$
Fixed MOH per hour	$\$ 1.91^{\mathrm{e}}$	-

a $65,500 \times 1.2=78,600$
${ }^{\mathrm{d}} \$ 618,840 \div 76,400=\$ 8.10$
${ }^{\mathrm{e}} \$ 145,790 \div 76,400=\$ 1.91$
b $76,400 \div 65,500=1.17$
c $65,500 \times 1.2 \times \$ 8=\$ 628,800$

An overview of the 4-variance analysis is:

| 4-Variance |
| :--- | :---: | :---: | :---: |
| Analysis |\quad| Spending |
| :---: |
| Variance |\quad| Efficiency |
| :---: |
| Variance |\quad| Production- |
| :---: |
| Volume Variance |

3. The control of variable manufacturing overhead requires the identification of the cost drivers for such items as energy, supplies, and repairs. Control often entails monitoring nonfinancial measures that affect each cost item, one by one. Examples are kilowatt-hours used, quantities of lubricants used, and repair parts and hours used. The most convincing way to discover why overhead performance did not agree with a budget is to investigate possible causes, line item by line item.
4. The variable overhead spending variance is unfavorable. This means the actual rate applied to the manufacturing costs is higher than the budgeted rate. Because variable overhead consists of several different costs, this could be for a variety of reasons, such as the utility rates being higher than estimated or the indirect materials costs per unit of denominator activity being more than estimated.

The variable overhead efficiency variance is favorable, which implies that the estimated denominator activity was too high. Because the denominator activity is machine hours, this could be the result of efficient use of machines, better scheduling of production runs, or machines that are well maintained and thus are working at more than the expected level of efficiency.

SOLUTION EXHIBIT 8-23

8-24 (20-25 min.) Overhead variances, service sector.
1.

Easy Meals Now (May 2014)	Actual Results	Flexible Budget	Static Budget
Output units (number of deliveries)	8,600	8,600	12,000
Hours per delivery	0.66^{a}	0.70	0.70
Hours of delivery time	5,660	$6,020^{\mathrm{b}}$	$8,400^{\mathrm{c}}$
Variable overhead costs per delivery hour	$\$ 2.00^{\mathrm{d}}$	$\$ 1.75$	$\$ 1.75$
Variable overhead (VOH) costs	$\$ 11,320$	$\$ 10,535^{\mathrm{e}}$	$\$ 14,700^{\mathrm{f}}$
Fixed overhead costs	$\$ 39,600$	$\$ 33,600$	$\$ 33,600$
Fixed overhead cost per hour			$\$ 4.67^{\mathrm{g}}$

${ }^{\text {a }} 5,660$ hours $\div 8,600$ deliveries $=0.66$ hours per delivery
${ }^{\mathrm{b}}$ hrs. per delivery \times actual number of deliveries $=0.70 \times 8,600=6,020$ hours
${ }^{c}$ hrs. per delivery \times expected number of deliveries $=0.70 \times 12,000=8,400$ hours
${ }^{\mathrm{d}} \$ 11,320 \mathrm{VOH}$ costs $\div 5,660$ delivery hours $=\$ 2.00$ per delivery hour
${ }^{\mathrm{e}} 8,600$ deliveries $\times 0.70$ hours per delivery $\times \$ 1.75 \mathrm{VOH}$ cost per delivery hour $=\$ 14,700$
${ }^{\mathrm{f}} 12,000$ deliveries $\times 0.70$ hours per delivery $\times \$ 1.75 \mathrm{VOH}$ cost per delivery hour $=\$ 14,700$
${ }^{\mathrm{f}}$ Static budget delivery hours $=12,000$ units $\times 0.70$ hours/unit $=8,400$ hours;
${ }^{\mathrm{g}}$ Fixed overhead rate $=$ Fixed overhead costs \div Static budget delivery hours $=\$ 33,600 \div 8,400$ hours $=\$ 4$ per hour

VARIABLE OVERHEAD

2.

FIXED OVERHEAD
Flexible Budget:
Same Budgeted
Lump Sum
(as in Static Budget)
Actual Costs
Regardless of Output
Level
Allocated:

Incurred
Flexible Budget:
Budgeted Input Qty.
Allowed for
ctual Costs
Budgeted Rate
Actual Output
\times Budgeted Rate
$6,020 \mathrm{hrs} \times \$ 1.75$ per hr.
\$10,535

Efficiency variance

3. The spending variances for variable and fixed overhead are both unfavorable. This means that EMN had increases over budget in either or both the cost of individual items (such as telephone calls and gasoline) in the overhead cost pools, or the usage of these individual items per unit of the allocation base (delivery time). The favorable efficiency variance for variable overhead costs results from more efficient use of the cost allocation base-each delivery takes 0.66 hours versus a budgeted 0.70 hours.

EMN can best manage its fixed overhead costs by long-term planning of capacity rather than day-to-day decisions. This involves planning to undertake only value-added fixed-overhead activities and then determining the appropriate level for those activities. Most fixed overhead costs are committed well before they are incurred. In contrast, for variable overhead, a mix of long-run planning and daily monitoring of the use of individual items is required to manage costs efficiently. EMN should plan to undertake only value-added variable-overhead activities (a longrun focus) and then manage the cost drivers of those activities in the most efficient way (a shortrun focus).

There is no production-volume variance for variable overhead costs. The unfavorable production-volume variance for fixed overhead costs arises because EMN has unused fixed overhead resources that it may seek to reduce in the long run.

8-25 (45-50 min.) Total overhead, 3-variance analysis.

1. This problem has two major purposes: (a) to give experience with data allocated on a total overhead basis instead of on separate variable and fixed bases and (b) to reinforce distinctions between actual hours of input, budgeted (standard) hours allowed for actual output, and denominator level.

An analysis of direct manufacturing labor will provide the data for actual hours of input and standard hours allowed. One approach is to plug the known figures (designated by asterisks) into the analytical framework and solve for the unknowns. The direct manufacturing labor efficiency variance can be computed by subtracting $\$ 9,640$ from $\$ 14,440$. The complete picture is as follows:

Flexible-budget variance

[^0]\[

$$
\begin{aligned}
& \text { Direct Labor calculations } \\
& \text { Actual input } \times \text { Budgeted rate }=\text { Actual costs }- \text { Price variance } \\
& \quad=\$ 202,440-\$ 9,640=\$ 192,800 \\
& \text { Actual input }=\$ 192,800 \div \text { Budgeted rate }=\$ 192,800 \div \$ 16=12,050 \text { hours } \\
& \text { Budgeted input } \times \text { Budgeted rate }=\$ 192,800-\text { Efficiency variance } \\
& =\$ 192,800-\$ 4,800=\$ 188,000 \\
& \text { Budgeted input }=\$ 188,000 \div \text { Budgeted rate }=\$ 188,000 \div 16=11,750 \text { hours } \\
& \\
& =10,000^{*} \times \$ 8.00=\$ 117,600
\end{aligned}
$$
\]

2. The calculations for total overhead are given below.

Repair Overhead

$$
\begin{array}{ll}
\begin{array}{l}
\text { Variable overhead rate } \\
\text { Budgeted fixed } \\
\text { overhead costs }
\end{array} & =\$ 64,000^{*} \div 8,000^{*} \text { hrs. }=\$ 8.00 \text { per standard labor-hour } \\
& =\$ 197,600^{*}-10,000^{*} \times(\$ 8.00)=\$ 117,600
\end{array}
$$

If total overhead is allocated at 120% of direct labor-cost, the single overhead rate must be 120% of $\$ 16.00$, or $\$ 19.20$ per hour. Therefore, the fixed overhead component of the rate must be $\$ 19.20-\$ 8.00$, or $\$ 11.20$ per direct labor-hour.

Let $\mathrm{D}=$ denominator level in input units

$$
\begin{aligned}
\begin{array}{l}
\text { Budgeted fixed } \\
\text { overhead rate } \\
\text { per input unit }
\end{array} & =\frac{\text { Budgeted fixed overhead costs }}{\text { Denominator level in input units }} \\
\$ 11.20 & =\frac{\$ 117,600}{\mathrm{D}} \\
D & =10,500 \text { direct labor-hours }
\end{aligned}
$$

A summary 3-variance analysis for February follows:

Actual Costs Incurred	Actual Inputs \times Budgeted Rate	Flexible Budget: Budgeted Input Allowed for Actual Output \times Budgeted Rate	Allocated: Budgeted Input Allowed for Actual Output \times Budgeted Rate
	\$117,600 + (12,050 \times \$8.00)	\$117,600 + (\$8 $\times 11,750$)	(11,750 hrs. \times \$19.20)
\$249,000*	\$214,000	\$211,600	\$225,600
4			$0 F^{*}$
	ding variance \quad Efficienc $\$ 37,400 \mathrm{U}$	varianceProduction-vo $\$ 14$	
	Flexible-budget variance	Production-volume variance	
		*Known figure	

An overview of the 3-variance analysis using the block format in the text is:

3-Variance Analysis	Spending Variance	Efficiency Variance	Production- Volume Variance
Total Overhead	$\$ 35,000 \mathrm{U}$	$\$ 2,400 \mathrm{U}$	$\$ 14,000 \mathrm{~F}$

3. The control of variable manufacturing overhead requires the identification of the cost drivers for such items as energy, supplies, equipment, and maintenance. Control often entails monitoring nonfinancial measures that affect each cost item, one by one. Examples are kilowatts used, quantities of lubricants used, and equipment parts and hours used. The most convincing way to discover why overhead performance did not agree with a budget is to investigate possible causes, line item by line item.

Individual fixed manufacturing overhead items are not usually affected very much by day-to-day control. Instead, they are controlled periodically through planning decisions and budgeting that may sometimes have horizons covering six months or a year (for example, management salaries) and sometimes covering many years (for example, long-term leases and depreciation on plant and equipment).

8-26 (35 min.) Production-volume variance analysis and sales volume variance.

1. and 2. Fixed Overhead Variance Analysis for Marissa Designs, Inc. for February

Actual Fixed Overhead		Static Budget Fixed Overhead		Standard Hours \times Budgeted Rate
				$\left(720 \times 1.5 \times \$ 6^{*}\right)$
\$11,400		\$10,800		\$6,480
\uparrow	\$600 U	\uparrow	\$4,320 U	

$$
\begin{aligned}
* \text { fixed overhead rate } & =(\text { budgeted fixed overhead }) /(\text { budgeted DL hours at capacity }) \\
& =\$ 10,800 /(1,200 \times 1.5 \text { hours }) \\
& =\$ 10,800 / 1,800 \text { hours } \\
& =\$ 6 / \text { hour }
\end{aligned}
$$

3. An unfavorable production-volume variance measures the cost of unused capacity. Production at capacity would result in a production-volume variance of zero because the fixed overhead rate is based on expected hours at capacity production. However, the existence of an unfavorable volume variance does not necessarily imply that management is doing a poor job or incurring unnecessary costs. Two reasons can be identified.
a. For most products, demand varies from month to month while commitment to the factors that determine capacity, e.g., size of the workshop or supervisory staff, tends to remain relatively constant. If Marissa wants to meet demand in high demand months, it will have excess capacity in low demand months. In addition,
forecasts of future demand contain uncertainty due to unknown future factors. Having some excess capacity would allow Marissa to produce enough to cover peak demand as well as slack to deal with unexpected demand surges in non-peak months.
b. Basic economics provides a demand curve that shows a tradeoff between price charged and quantity demanded. Potentially, Marissa could have a lower net revenue if they produce at capacity and sell at a lower price than if they sell at a higher price at some level below capacity.

In addition, the unfavorable production-volume variance may not represent a feasible cost savings associated with lower capacity. Even if Marissa could shift to lower fixed costs by lowering capacity, the fixed cost may behave as a step function. If so, fixed costs would decrease in fixed amounts associated with a range of production capacity, not a specific production volume. The production-volume variance would only accurately identify potential cost savings if the fixed cost function is continuous, not discrete.
4. The static-budget operating income for February is:

Revenues $\$ 55 \times 1,200 \quad \$ 66,000$
Variable costs $\$ 25 \times 1,200 \quad 30,000$
Fixed overhead costs
Static-budget operating income 10,800 \$25,200

The flexible-budget operating income for February is:
Revenues $\$ 55 \times 720$ \$39,600
Variable costs $\$ 25 \times 720$
18,000
Fixed overhead costs
Flexible-budget operating income 10,800
\$10,800

The sales-volume variance represents the difference between the static-budget operating income and the flexible-budget operating income:

Static-budget operating income	$\$ 25,200$
Flexible-budget operating income	$\underline{10,800}$
Sales-volume variance	$\underline{\$ 14,400} \mathrm{U}$

Equivalently, the sales-volume variance captures the fact that when Marissa sells 720 units instead of the budgeted 1,200 , only the revenue and the variable costs are affected. Fixed costs remain unchanged. Therefore, the shortfall in profit is equal to the budgeted contribution margin per unit times the shortfall in output relative to budget.

In contrast, we computed in requirement 2 that the production-volume variance was $\$ 4,320 \mathrm{U}$. This captures only the portion of the budgeted fixed overhead expected to be unabsorbed because of the 480 -unit shortfall. To compare it to the sales-volume variance, consider the following:

Budgeted selling price		$\$ 55$
\quad Budgeted variable cost per unit	$\$ 25$	
Budgeted fixed cost per unit $(\$ 10,800 \div 1,200)$	$\underline{9}$	
Budgeted cost per unit		$\underline{34}$
Budgeted profit per unit	$\underline{\underline{\$ 21}}$	

Operating income based on budgeted profit per unit
$\$ 21$ per unit $\times 720$ units
\$15,120
The $\$ 4,320$ U production-volume variance explains the difference between operating income based on the budgeted profit per unit and the flexible-budget operating income:

Operating income based on budgeted profit per unit Production-volume variance
Flexible-budget operating income
\$15,120
4,320 U
\$10,800

Because the sales-volume variance represents the difference between the static- and flexiblebudget operating incomes, the difference between the sales-volume and production-volume variances, which is referred to as the operating-income volume variance, is:

Operating-income volume variance
$=$ Sales-volume variance - Production-volume variance
$=$ Static-budget operating income - Operating income based on budgeted profit per unit
$=\$ 25,200 \mathrm{U}-\$ 15,120 \mathrm{U}=\$ 10,080 \mathrm{U}$.
The operating-income volume variance explains the difference between the static-budget operating income and the budgeted operating income for the units actually sold. The staticbudget operating income is $\$ 25,200$ and the budgeted operating income for 720 units would have been $\$ 15,120$ ($\$ 21$ operating income per unit $\times 720$ units). The difference, $\$ 10,080 \mathrm{U}$, is the operating-income volume variance, i.e., the 480 unit drop in actual volume relative to budgeted volume would have caused an expected drop of $\$ 10,080$ in operating income, at the budgeted operating income of $\$ 21$ per unit. The operating-income volume variance assumes that $\$ 4,320$ in fixed cost ($\$ 9$ per unit $\times 480$ units) would be saved if production and sales volumes decreased by 480 units.

8-27 (20 min.) Overhead variances, service setting.

1. and 2. Variable and Fixed Technology Overhead Variance Analysis for Munich Partners for the first quarter of 2014

$\begin{array}{lllll}\begin{array}{l}\text { Fixed } \\ \text { Technology } \\ \text { Overhead }\end{array} & \$ 12,200 & \$ 11,200 & \$ 11,200 & (15,000 \times 0.2 \times \$ 4) \\ \$ 12,000\end{array}$
2. Munich Partners has done a reasonable job overall of managing its technology overhead costs. It has an unfavorable variable overhead efficiency variance because it used too many CPU units of processing time relative to the number of client interactions it had. This is not an issue if the goal was to meet the high-performance computing needs of clients and resulted in higher levels of client satisfaction or revenues. For the 4,000 CPU units used, Munich Partners spent $\$ 1.375$ per unit relative to the budgeted $\$ 1.50$, so the price/spending variance on variable technology overhead was favorable.

From the standpoint of capacity utilization, Munich Partners were successful at managing their fixed technology overhead resources. They handled 15,000 client interactions, compared to an expected output of 14,000 . It would be useful to know what the firm views as the maximum attainable level of capacity given its current spending on technology. This is particularly significant because Munich Partners spent an additional $\$ 1,000$ more than the expected expenditure on fixed resources for the period. The firm should attempt to identify the causes of this negative spending variance and assess whether this higher spending level is likely to persist in future years.

8-28 (15 min.) Identifying favorable and unfavorable variances.

Scenario	$\underset{\substack{\text { Vponding } \\ \text { Vpent }}}{\text { VOH }}$ Variance	VOH Efficiency Variance	FOH Spending Variance	FOH ProductionVolume Variance
Production output is 6% less than budgeted, and actual fixed manufacturing overhead costs are 5% more than budgeted.	Cannot be determined; no information on actual versus budgeted VOH rates.	Cannot be determined; no information on actual versus flexible-budget machine-hours.	Unfavorable:;actual fixed costs are more than budgeted fixed costs.	Unfavorable; output is less than budgeted causing FOH costs to be underallocated.
Production output is 13% less than budgeted; actual machine-hours are 7% more than budgeted.	Cannot be determined; no information on actual versus budgeted VOH rates.	Unfavorable; actual machinehours more than flexible-budget machine-hours.	Cannot be determined; no information on actual versus budgeted FOH costs.	Unfavorable; output is less than budgeted causing FOH costs to be underallocated.
Production output is 10% more than budgeted.	Cannot be determined; no information on actual versus budgeted VOH rates.	Cannot be determined; no information on actual machinehours versus flexible-budget machine-hours.	Cannot be determined; no information on actual versus budgeted FOH costs.	Favorable; output more than budgeted will cause FOH costs to be overallocated.
Actual machinehours are 20\% less than flexible-budget machine-hours.	Cannot be determined; no information on actual versus budgeted VOH rates.	Favorable; less machine-hours used relative to flexible budget.	Cannot be determined; no information on actual versus budgeted FOH costs.	Cannot be determined; no information on flexible-budget machine-hours relative to staticbudget machinehours.
Relative to the flexible budget, actual machinehours are 15% less, and actual variable manufacturing overhead costs are 20% greater.	Unfavorable; actual VOH rate greater than budgeted VOH rate.	Favorable; actual machine-hours less than flexiblebudget machinehours.	Cannot be determined; no information on actual versus budgeted FOH costs.	Cannot be determined; no information on actual output relative to budgeted output.

8-29 (35 min.) Flexible-budget variances, review of Chapters 7 and 8.

1. Solution Exhibit 8-29 contains a columnar presentation of the variances for Darby Design Company (DDC) for April 2014.

SOLUTION EXHIBIT 8-29

Fixed Manufacturing Overhead	$\$ 160,000$	$\$ 143,500^{*}$	$\$ 143,500$	$(32,000 \times 0.3 \times \$ 14)$	
		$\$ 16,500 \mathrm{U}$	Never a variance		g. Production volume variance

*Denominator level (Annual) in pounds of material: $410,000 \times 0.3=123,000$ pounds
Annual Budgeted Fixed Overhead: $123,000 \times \$ 14 / \mathrm{lb}=\$ 1,722,000$
Monthly budgeted FOH: $\$ 1,722,000 / 12=\$ 143,500$
2. The direct materials price variance indicates that DDC paid more for brass than they had planned. If this is because they purchased a higher quality of brass, it may explain why they used less brass than expected (leading to a favorable material efficiency variance). In turn, because variable manufacturing overhead is assigned based on pounds of materials used, this directly led to the favorable variable overhead efficiency variance. The purchase of a better quality of brass may also explain why it took less labor time to produce the doorknobs than expected (the favorable direct labor efficiency variance). Finally, the unfavorable direct labor price variance could imply that the workers who were hired were more experienced than expected, which could also be related to the positive direct material and direct labor efficiency variances.

8-30 (30 min.) Comprehensive variance analysis.

1. Budgeted number of machine-hours planned can be calculated by multiplying the number of units planned (budgeted) by the number of machine-hours allocated per unit: 588 units $\times 3$ machine-hours per unit $=1,764$ machine-hours.
2. Budgeted fixed MOH costs per machine-hour can be computed by dividing the flexible budget amount for fixed MOH (which is the same as the static budget) by the number of machine-hours planned (calculated in 1.):

$$
\$ 343,980 \div 1,764 \text { machine-hours }=\$ 195.00 \text { per machine-hour } .
$$

3. Budgeted variable MOH costs per machine-hour are calculated as budgeted variable MOH costs divided by the budgeted number of machine-hours planned:
$\$ 72,324 \div 1,764$ machine-hours $=\$ 41.00$ per machine-hour.
4. Budgeted number of machine-hours allowed for actual output achieved can be calculated by dividing the flexible-budget amount for variable MOH by budgeted variable MOH costs per machine-hour:
$\$ 79,950 \div \$ 41.00$ per machine-hour $=1,950$ machine-hours allowed.
5. The actual number of output units is the budgeted number of machine-hours allowed for actual output achieved divided by the planned allocation rate of machine hours per unit:

1,950 machine-hours $\div 3$ machine-hours per unit $=650$ units.
6. The actual number of machine-hours used per output unit is the actual number of machine hours used (given) divided by the actual number of units manufactured:

1,170 machine-hours $\div 650$ units $=1.8$ machine-hours used per output unit.

8-31 (60 min.) Journal entries (continuation of 8-30).

1. Key information underlying the computation of variances is:

	Actual Results	Flexible-Budget Amount	Static-Budget Amount
1. Output units (food processors) 2. Machine-hours	M		
3. Machine-hours per output unit	1.80	650	588
4. Variable MOH costs 5. Variable MOH costs per machine- hour (Row 4 \div Row 2)	$\$ 51,480$	$\$, 950$	1,764
6. Variable MOH costs per unit (Row 4 \div Row 1)	$\$ 44.00$	$\$ 41.00$	3.00
7. Fixed MOH costs 8. Fixed MOH costs per machine- hour (Row 7 \div Row 2)	$\$ 79.20$	$\$ 123.00$	$\$ 72,324$
9. Fixed MOH costs per unit (Row 7 \div Row 1)	$\$ 299.32$	$\$ 176.40$	$\$ 123.00$

Solution Exhibit 8-31 shows the computation of the variances.
Journal entries for variable MOH, year ended December 31, 2014:

Variable MOH Control	51,480	
Accounts Payable Control and Other Accounts		51,480
Work-in-Process Control	79,950	
\quad Variable MOH Allocated		79,950
	79,950	
Variable MOH Allocated	3,510	
Variable MOH Spending Variance		31,980
Variable MOH Control	51,480	

Journal entries for fixed MOH, year ended December 31, 2014:
Fixed MOH Control 350,210
Wages Payable, Accumulated Depreciation, etc.
Work-in-Process Control 380,250
Fixed MOH Allocated

Fixed MOH Allocated 380,250
Fixed MOH Spending Variance $\quad 6,230$
Fixed MOH Control
350,210
Fixed MOH Production-Volume Variance 36,270

2. Adjustment of COGS

Variable MOH Efficiency Variance	31,980	
Fixed MOH Production-Volume Variance	36,270	
Variable MOH Spending Variance		3,510
Fixed MOH Spending Variance	6,230	
Cost of Goods Sold	58,510	

SOLUTION EXHIBIT 8-31

Variable Manufacturing Overhead

Actual Costs Incurred (1)	Actual Input Qty. \times Budgeted Rate (2)	Flexible Budget: Budgeted Input Qty. Allowed for Actual Output \times Budgeted Rate (3)	Allocated: Budgeted Input Qty. Allowed for Actual Output \times Budgeted Rate (4)
(1,170 \times \$44)	(1,170 \times \$41)	(1,950 \times \$41)	(1,950 \times \$41)
\$51,480	\$47,970	\$79,950	\$79,950
Spending variance Efficiency variance Never			riance

Fixed Manufacturing Overhead

8-32 (30-40 min.) Graphs and overhead variances.

1. Variable Manufacturing Overhead Costs

Fixed Manufacturing Overhead Costs

[^1]2. (a) Variable Manufacturing Overhead Variance Analysis for Best Around, Inc. for 2014

Actual Costs Incurred (1)	Actual Input Qty. \times Budgeted Rate (2)	Flexible Budget: Budgeted Input Qty. Allowed for Actual Output \times Budgeted Rate (3)	Allocated: Budgeted Input Qty. Allowed for Actual Output \times Budgeted Rate (4)
	(1,200,000 \times \$10)	(1,125,000 \times \$10)	(1,125,000 \times \$10)
\$12,075,000	\$12,000,000	\$11,250,000	\$11,250,000
		4	
Spending variance Efficiency variance			
Flexible-budget variance $\qquad \$ 825,000 \mathrm{U}$			

Underallocated variable overhead (Total variable overhead variance)
(b) Fixed Manufacturing Overhead Variance Analysis for Best Around, Inc., for 2014

Actual Costs Incurred (1)	Same Budgeted Lump Sum (as in Static Budget) Regardless of Output Level (2)	Flexible Budget: Same Budgeted Lump Sum (as in Static Budget) Regardless of Output Level (3)	Allocated: Budgeted Input Qty. Allowed for Actual Output \times Budgeted Rate (4)
$\begin{gathered} \$ 17,100,000 \\ \hline \end{gathered}$			
$\$ 100,000 \mathrm{U} \quad \uparrow \quad \$ 2,125,000 \mathrm{~F}^{*}$			
4 Flexible-budget variance \quad Production-volume variance			
Overallocated fixed overhead (Total fixed overhead variance)			

*Alternative computation: 1,125,000 budgeted hrs. allowed $-1,000,000$ denominator hrs. $=125,000 \mathrm{hrs}$.

$$
125,000 \times \$ 17=\$ 2,125,000 \mathrm{~F}
$$

3. The underallocated variable manufacturing overhead was $\$ 825,000$ and overallocated fixed overhead was $\$ 2,025,000$. The flexible-budget variance and underallocated overhead are always the same amount for variable manufacturing overhead because the flexible-budget amount of variable manufacturing overhead and the allocated amount of variable manufacturing overhead coincide. In contrast, the budgeted and allocated amounts for fixed manufacturing overhead only coincide when the budgeted input of the allocation base for the actual output level achieved exactly equals the denominator level.
4. The choice of the denominator level will affect inventory costs. The new fixed manufacturing overhead rate would be $\$ 17,000,000 \div 1,700,000=\$ 10.00$ per machine-hour. In turn, the allocated amount of fixed manufacturing overhead and the production-volume variance would change as seen below:

Actual	Budget	Allocated
\$17,100,000	\$17,000,000	$\begin{gathered} 1,125,000 \times \$ 10.00= \\ \$ 11,250,000 \end{gathered}$
4	\uparrow	U
4Flexible-budget variance $\$ 5,850,000 \mathrm{U}$		

Total fixed overhead variance

- Alternate computation: $(1,700,000-1,125,000) \times \$ 10.00=\$ 5,750,000 \mathrm{U}$

The major point of this requirement is that inventory costs (and, hence, income determination) can be heavily affected by the choice of the denominator level used for setting the fixed manufacturing overhead rate.

8-33 (30 min.) Overhead variance, missing information.

Known figures denoted by an *

Case A:

		Flexible Budget: Budgeted Input	Allocated: Budgeted Input
	Qty.	Qty.	

Variable
Manufacturing
Overhead

Fixed
Manufacturing

Total budgeted manufacturing overhead $=\$ 124,000+\$ 88,200=\$ 212,200$

Case B:

	Actual Input Qty.	Flexible Budget: Budgeted Input Qty. Allowed for	Allocated: Budgeted Input Qty.
			Allowed for
Actual Costs		Actual Output	Actual Output
Incurred	\times Budgeted Rate	\times Budgeted Rate	\times Budgeted Rate

Variable
Manufacturing
Overhead

Fixed
Manufacturing

Total budgeted manufacturing overhead $=\$ 50,400+\$ 20,000=\$ 70,400$
${ }^{\text {a }}$ Budgeted FMOH rate $=$ Standard fixed manufacturing overhead allocated \div Standard machine-hours allowed for actual output achieved $=\$ 86,800 \div 6,200=\$ 14$.
b
Budgeted hours allowed for actual output achieved must be derived from the output level variance before this figure can be derived, or because the fixed manufacturing overhead rate is $\$ 20,000 \div 1,000=\$ 20$ and the allocated amount is $\$ 24,000$, the budgeted hours allowed for the actual output achieved must be $1,200(\$ 24,000 \div \$ 20)$.
${ }^{\text {c }} 1,200 \times\left(\$ 20,000^{*} \div 1,000^{*}\right)=\$ 24,000$.

8-34 (15-25 min.) Flexible budgets, 4-variance analysis.

$\begin{aligned} \text { 1. Budgeted hours allowed } \\ \text { per unit of output }\end{aligned}=\frac{\text { Budgeted DLH }}{\text { Budgeted actual output }}$
Budgeted DLH allowed for May output $=72,000$ units $\times 5 \mathrm{hrs} . /$ unit $=360,000 \mathrm{hrs}$.

$$
\begin{aligned}
\text { Allocated total MOH } & =360,000 \times \text { Total MOH rate per hour } \\
& =360,000 \times \$ 0.99=\$ 356,400
\end{aligned}
$$

2, 3, 4, 5. See Solution Exhibit 8-34
Variable manuf. overhead rate per DLH $=\$ 0.30+\$ 0.20=\$ 0.50$
Fixed manuf. overhead rate per DLH $\quad=\$ 0.17+\$ 0.11+\$ 0.21=\$ 0.49$
Fixed manuf. overhead budget for May $=(\$ 571,200+\$ 369,600+\$ 705,600) \div 12$

$$
=\$ 1,646,400 \div 12=\$ 137,200
$$

or,
Fixed manuf. overhead budget for May $=\$ 47,600+\$ 30,800+\$ 58,800=\$ 137,200$
Using the format of Exhibit 8-5 for variable manufacturing overhead and then fixed manufacturing overhead:
Actual variable manuf. overhead: $\$ 84,000+\$ 117,000=\$ 201,000$
Actual fixed manuf. overhead: $\$ 41,000+\$ 55,000+\$ 58,800=\$ 154,800$

An overview of the 4-variance analysis using the block format of the text is:

4-Variance	Spending Analysis	Efficiency Variance	Production- Volume Variance
Variable	$\$ 40,500 \mathrm{U}$	$\$ 19,500 \mathrm{~F}$	Never a variance
Manufacturing Overhead	$\$ 17,600 \mathrm{U}$	Never a variance	$\$ 39,200 \mathrm{~F}$
Fixed Manufacturing Overhead			

SOLUTION EXHIBIT 8-34

Variable Manufacturing Overhead

Fixed Manufacturing Overhead

8-35 (20 min.) Activity-based costing, batch-level variance analysis

1. Static budget number of crates $=$ Budgeted pairs shipped $/$ Budgeted pairs per crate $=225,000 / 15$
$=15,000$ crates
2. Flexible budget number of crates $=$ Actual pairs shipped $/$ Budgeted pairs per crate $=180,000 / 15$
$=12,000$ crates
3. Actual number of crates shipped = Actual pairs shipped / Actual pairs per box
$=180,000 / 10$
$=18,000$ crates
4. \quad Static budget number of hours $=$ Static budget number of crates \times budgeted hours per box $=15,000 \times 0.9=13,500$ hours

Fixed overhead rate $=$ Static budget fixed overhead $/$ static budget number of hours $=\$ 54,000 / 13,500$
$=\$ 4.00$ per hour
5. Variable Direct Variance Analysis for Audrina's Fleet Feet, Inc. for 2014

6. Fixed Overhead Variance Analysis for Audrina's Fleet Feet, Inc. for 2014

8-36 (30-40 minutes) Overhead variances and sales volume variance

1. Variable overhead variances

Fixed overhead variances

Actual
Fixed Overhead
\$501,900

Static Budget
Fixed Overhead
Standard Hours
\times Budgeted Rate
(900,000 $\left.\times 0.5 \times \$ 1.25^{*}\right)$
$\$ 562,500$
$\$ 62,500 \mathrm{~F}$
on-volume variance
*FOH rate is $\$ 500,000 / 400,000$ std hours $=\$ 1.25$ per hour
2.

	Flexible- Budget		Sales- Volume	
Actual	Variances	Flexible	Variances	Static Results
(2) $=(\mathbf{1})-$	Budget	$(4)=(\mathbf{3})-$	Budget	

(1)
(3)
(3)
(5)
(5)

Units sold	900,000		900,000		800,000
Unit price	\$6		\$5		\$5
Revenues	\$5,400,000	\$900,000 F	\$4,500,000	\$500,000 F	\$4,000,000
Variable costs					
Direct materials	1,080,000	0	1,080,000	120,000 U	960,000
Direct labor	1,620,000	0	1,620,000	180,000 U	1,440,000
Variable overhead	699,600	20,400 F	720,000	80,000 U	640,000
Total variable costs	3,399,600	20,400 F	3,420,000	380,000 U	3,040,000
Contribution margin	2,000,400	920,400 F	1,080,000	120,000 F	960,000
Fixed manufacturing costs	501,900	1,900 U	500,000	$\underline{0}$	500,000
Operating income	\$1,498,500	\$918,500 F	\$ 580,000	\$120,000 F	\$460,000

3. Budgeted cost per shopping bag:

Direct materials per bag (given)
\$1.20
Direct labor per bag (given)
Variable overhead ($\$ 1.6$ per hour $\times 0.5 \mathrm{MH}$) 0.80
Fixed overhead ($\$ 1.25$ per hour $\times 0.5 \mathrm{MH}$) $\underline{0.625}$
Total $\$ 4.425$
Budgeted sales revenue, 900,000 actual units sold
$900,000 \times \$ 5 \quad \$ 4,500,000$
Budgeted Cost of Goods sold
$900,000 \times \$ 4.425$
Budgeted operating income

3,982,500
\$ 517,500
4. Budgeted operating income (from \#3) \$ 517,500

Add: favorable volume variance (from \#1) $\quad 58,750$
Flexible budget operating income \$ 580,000
Add: Favorable flexible budget variance $\quad 918,500$
Actual operating income
\$1,498,500
5. Operating income volume variance:

Budgeted operating income for actual output - static budget operating income $=\$ 517,500-\$ 460,000=\$ 57,500 \mathrm{~F}$

Sales volume variance $=\$ 116,250 \mathrm{~F}$
$=$ production volume variance + operating income volume variance
$=\$ 58,750+\$ 57,500=\$ 116,250 \mathrm{~F}$

8-37 (30 min.) Activity-based costing, batch-level variance analysis

1. Static budget number of setups $=$ Budgeted books produced/ Budgeted books per setup

$$
=197,600 \div 520=380 \text { setups }
$$

2. Flexible budget number of setups = Actual books produced $/$ Budgeted books per setup

$$
=225,680 \div 520=434 \text { setups }
$$

3. Actual number of setups = Actual books produced / Actual books per setup

$$
=225,680 / 496=455 \text { setups }
$$

4. Static budget number of hours $=$ Static budget $\#$ of setups \times Budgeted hours per setup

$$
=380 \times 7=2,660 \text { hours }
$$

Fixed overhead rate $=$ Static budget fixed overhead $/$ Static budget number of hours $=\$ 53,200 / 2,660=\$ 20$ per hour
5. Budgeted direct variable cost of a setup
$=$ Budgeted variable cost per setup-hour \times Budgeted number of setup-hours $=\$ 130 \times 7=\$ 910$.

Budgeted total cost of a setup
$=$ Budgeted direct variable cost + Fixed overhead rate \times Budgeted number of setup-hours $=\$ 910+\$ 20 \times 7=\$ 1,050$.

So, the charge of $\$ 987$ covers the budgeted incremental (i.e., variable) cost of a setup but not the budgeted full cost.
6. Direct Variable Variance Analysis for Rae Steven Publishing Company for 2014

Actual Variable Cost	Actual hours x Budgeted rate	Standard hours x Standard rate
(455 $\times 7.5 \times \$ 70$)	$(455 \times 7.5 \times \$ 130)$	$(434 \times 7.0 \times \$ 130)$
\$238,875	\$443,625	\$394,940
$\$ 20$	F	$85 \mathrm{U} \quad \uparrow$

7. Fixed Setup Overhead Variance Analysis for Rae Steven Publishing Company for 2014

Actual Fixed Overhead	Static Budget Fixed Overhead	Standard hours \times Budgeted Rate	
$\$ 68,000$ $\$ 53,200$	$(434 \times 7.0 \times \$ 20)$ $\$ 60,760$		
	$\$ 14,800 \mathrm{U}$	$\$ 7,560 \mathrm{~F}$	

Spending variance Production-volume variance
8. Rejecting an order may have implications for future orders (i.e., professors would be reluctant to order books from this publisher again). Rae Steven should consider factors such as prior history with the customer and potential future sales.

If a book is relatively new, Rae Steven might consider running a full batch and holding the extra books in case of a second special order or just hold the extra books until next semester.

If the special order comes at heavy volume times, Rae Steven should look at the opportunity cost of filling it, i.e., accepting the order may interfere with or delay the printing of other books.

8-38 (30-40 min.) Comprehensive review of Chapters 7 and 8, working backward from given variances.

1. Solution Exhibit 8-38 outlines the Chapter 7 and 8 framework underlying this solution.
a. Pounds of direct materials purchased $=\$ 179,300 \div \$ 1.10=163,000$ pounds
b. Pounds of excess direct materials used $=\$ 75,900 \div \$ 11.50=6,600$ pounds
c. \quad Variable manufacturing overhead spending variance $=\$ 10,400-\$ 18,100=\$ 7,700 \mathrm{~F}$
d. Standard direct manufacturing labor rate $=\$ 1,250,000 \div 50,000$ hours $=\$ 25$ per hour Actual direct manufacturing labor rate $=\$ 25+\$ 0.50=\$ 25.50$
Actual direct manufacturing labor-hours $=\$ 535,500 \div \$ 25.50$

$$
=21,000 \text { hours }
$$

e. Standard variable manufacturing overhead rate $=\$ 500,000 \div 50,000$

$$
=\$ 10 \text { per direct manuf. labor-hour }
$$

Variable manuf. overhead efficiency variance of $\$ 18,100 \div \$ 10=1,810$ excess hours Actual hours - Excess hours $=$ Standard hours allowed for units produced $21,000-1,810=19,190$ hours
f. Budgeted fixed manufacturing overhead rate $=\$ 1,000,000 \div 50,000$ hours

$$
=\$ 20 \text { per direct manuf. labor-hour }
$$

Fixed manufacturing overhead allocated $=\$ 20 \times 19,190$ hours $=\$ 383,800$
Production-volume variance $=\$ 1,000,000-\$ 383,800=\$ 616,200 \mathrm{U}$
2. The control of variable manufacturing overhead requires the identification of the cost drivers for such items as energy, supplies, and repairs. Control often entails monitoring nonfinancial measures that affect each cost item, one by one. Examples are kilowatts used, quantities of lubricants used, and repair parts and hours used. The most convincing way to discover why overhead performance did not agree with a budget is to investigate possible causes, line item by line item.

Individual fixed overhead items are not usually affected very much by day-to-day control. Instead, they are controlled periodically through planning decisions and budgeting procedures that may sometimes have planning horizons covering six months or a year (for example, management salaries) and sometimes covering many years (for example, long-term leases and depreciation on plant and equipment).

SOLUTION EXHIBIT 8-38

	Actual Costs Incurred Actual Input Qty. \times Actual Rate	Actual Input Qty. \times Budgeted Rate	Flexible Budget: Budgeted Input Qty. Allowed for Actual Output \times Budgeted Rate	Allocated: Budgeted Input Qty. Allowed for Actual Output \times Budgeted Rate
Variable	21,000 \times \$9.63	21,000 \times \$10	19,190× \$10	19,190 \times \$10
MOH	\$202,300	\$210,000	\$191,900	\$191,900
	$\$ \quad \$ 7,$		$00 \mathrm{U}$	\uparrow
	${ }^{\text {Spendin }}$	$\begin{array}{ll} \text { ance } & \text { Eff } \\ \$ 10,400 \mathrm{U} & \\ \hline \end{array}$	$\quad 4^{\text {Never a }}$	ance
	Flexible-budget variance \quad Never a variance			

Fixed
MOH

Actual Costs Incurred (1)	Same Budgeted Lump Sum (as in Static Budget) Regardless of Output Level (2)	Flexible Budget: Same Budgeted Lump Sum (as in Static Budget) Regardless of Output Level (3)	Allocated: Budgeted Input Qty. Allowed for Actual Output \times Budgeted Rate (4)
\$957,550	\$1,000,000	$\begin{gathered} \hline 50,000 \times \$ 20 \\ \$ 1,000,000 \end{gathered}$	$\begin{gathered} 19,190 \times \$ 20 \\ \$ 383,800 \end{gathered}$
4		$\$ \quad \$ 616$	$200 \mathrm{U}$
$\begin{array}{\|cc\|} \hline \text { Spending variance } \begin{array}{c} \text { Never a variance } \\ \$ 42,450 \mathrm{~F} \end{array} & \uparrow \\ \hline \end{array}$			

8-39 (30-50 min.) Review of Chapters 7 and 8, 3-variance analysis.

Note: In some print versions of the text, the name of the company is stated as Beal. The problem should refer to the Brown Manufacturing Company instead.

1. Total standard production costs are based on 7,600 units of output.

Direct materials, 7,600 $\times \$ 20.00$
$7,600 \times 5 \mathrm{lbs} . \times \$ 4.00$ (or $38,000 \mathrm{lbs} . \times \$ 4.00$) $\$ 152,000$
Direct manufacturing labor, $7,600 \times \$ 64.00$
$7,600 \times 4$ hrs. $\times \$ 16.00$ (or 30,400 hrs. $\times \$ 16.00$) 486,400
Manufacturing overhead:
Variable, 7,600 $\times \$ 32.00$ (or $30,400 \mathrm{hrs} . \times \$ 8.00$)
Fixed, $7,600 \times \$ 36.00$ (or $30,400 \mathrm{hrs} . \times \$ 9.00$)
Total
243,200
273,600
\$1,155,200
The following is for later use:
Fixed manufacturing overhead, a lump-sum budget $\quad \underline{\underline{333,000}}{ }^{*}$

$$
\begin{aligned}
\text { *Fixed manufacturing overhead rate } & =\frac{\text { Budgeted fixed manufacturing overhead }}{\text { Denominator level }} \\
\$ 9.00 & =\text { Budget } / 37,000 \text { hours } \\
\text { Budget } & =37,000 \text { hours } \times \$ 9.00=\$ 333,000
\end{aligned}
$$

2. Solution Exhibit 8-39 presents a columnar presentation of the variances. An overview of the 3 -variance analysis using the block format of the text is:

3-Variance Analysis	Spending Variance	Efficiency Variance	Production Volume Variance
Total Manufacturing Overhead	$\$ 65,800 \mathrm{U}$	$\$ 8,000 \mathrm{U}$	$\$ 59,400 \mathrm{U}$

SOLUTION EXHIBIT 8-39

Actual Costs

Incurred:
Actual Input Qty.

Flexible Budget:
Budgeted Input Qty.
$\frac{\times \text { Actual Rate }}{(40,300 \times \$ 3.80)} \frac{\text { Purchases }}{(40,300 \times \$ 4.00)} \quad \frac{\text { Usage }}{(37,300 \times \$ 4.00)} \xrightarrow{(38,000 \times \$ 4.00)}$

Materials
$\$ 153,140 \quad \$ 161,200$

a. Price variance

Allowed for Actual Output
Actual Input Qty. \times Budgeted Price
\$152,000

b. Efficiency variance

Direct
Manuf.

Flexible Budget:
Allocated:
Budgeted Input Qty. (Budgeted Input Qty.

Variable Manuf. Overhead	Actual Costs Incurred	Actual Input Qty. \times Budgeted Rate	Allowed for Actual Output \times Budgeted Rate	Allowed for Actual Output \times Budgeted Rate)
	(not given)	$\begin{gathered} (31,400 \times \$ 8.00) \\ \$ 251,200 \end{gathered}$	$\begin{gathered} (30,400 \times \$ 8.00) \\ \$ 243,200 \end{gathered}$	$\begin{gathered} (30,400 \times \$ 8.00) \\ \$ 243,200 \end{gathered}$
		Effic	$\frac{10 \mathrm{U}}{\text { variance }}$	variance

Fixed
Manuf.
Overhead (not given)

Total
Manuf. (given) (\$333,000 + \$251,200) (\$243,200 + \$333,000) (\$234,200 + \$273,600)
Overhead \$650,000 \$584,200 \$576,200 \$507,800 $\underset{\text { e. Spending variance }}{\$ 65,800 \mathrm{U}} \underset{\text { f. Efficiency variance }}{\$ 8,000 \mathrm{U}} \underset{\text { g. Prodn. volume variance }}{\text { \& }}$
*Denominator level in hours
Production volume in standard hours allowed
Production-volume variance

37,000
30,400
6,600 hours $\times \$ 9.00=\$ 59,400 \mathrm{U}$

8-40 (20 minutes) Non-financial variances.
Note: In some print versions of the text, the name of the company is incorrectly referred to at one point as Supreme rather than Max Canine Products.

1. Variance Analysis of Inspection Hours for Max Canine Products for May

Actual Pounds
Actual Hours
For Inspections
200 hours

Inspected/Budgeted
Pounds per hour
292,500 lbs/1,300 lbs/hr 225 hours

Standard Pounds Inspected for Actual Output /Budgeted

Pounds per hour
$(2,990,000 \times 0.1) \mathrm{lbs} /(1,300 \mathrm{lbs} / \mathrm{hr})$
230 hours

\uparrow	25 hours F\uparrow
Efficiency Variance	Quantity Variance

2. Variance Analysis of Pounds Failing Inspection for Max Canine Products for May

Actual pounds

Actual Pounds
Failing Inspections

Inspected \times Budgeted
Inspection Failure Rate
(292,500 lbs $\times 0.05$) $14,625 \mathrm{lbs}$
15,625 lbs
$\uparrow \quad 1,000 \mathrm{lbs}$ U
Quality Variance

| \uparrow | $1,000 \mathrm{lbs} \mathrm{U}$ |
| :---: | :---: |$\underset{\text { Quality Variance }}{\text { Quantity Variance }}$

Standard Pounds Inspected
for Actual Output \times Budgeted Inspection Failure Rate (2,990,000 $\times 0.1 \times 0.05$)
$14,950 \mathrm{lbs}$

8-41 (30 minutes) Overhead variances, service sector.

1. In the columnar presentation of variable overhead variance analysis, all numbers shown in bold are calculated from the given information, in the order (a)-(e).

VARIABLE MANUFACTURING OVERHEAD

Flexible Budget:

Budgeted Input Qty.

Flexible-budget variance
a. $\quad 15,000$ RAM hours $\times \$ 6$ per RAM hour $=\$ 90,000$
b. Actual $\mathrm{VMOH}=\$ 90,000-\$ 500 \mathrm{~F}(\mathrm{VOH}$ spending variance $)=\$ 89,500$
c. $\quad 14,850$ RAM hours $\times \$ 6$ per RAM hour $=\$ 89,100$
d. VOH efficiency variance $=\$ 90,000-\$ 89,100=\$ 900 \mathrm{U}$
e. \quad VOH flexible budget variance $=\$ 900 \mathrm{U}-\$ 500 \mathrm{~F}=\$ 400 \mathrm{U}$

Allocated variable overhead will be the same as the flexible budget variable overhead of $\$ 89,100$. The actual variable overhead cost is $\$ 89,500$. Therefore, variable overhead is underallocated by $\$ 400$.
2. In the columnar presentation of fixed overhead variance analysis, all numbers shown in bold are calculated from the given information, in the order (a)-(e).

FIXED MANUFACTURING OVERHEAD
Flexible Budget:
Allocated:
Static Budget Lump Sum Budgeted Input Qty.
Actual Costs
Incurred
(a)
(a)

a. Actual FOH costs $=\$ 119,875$ total overhead costs $-\$ 89,500 \mathrm{VOH}$ costs $=\$ 30,375$
b. Static budget FOH lump sum $=\$ 30,375-\$ 1,575$ spending variance $=\$ 28,800$
c. \quad FOH allocation rate $=\$ 28,800 \mathrm{FOH}$ static-budget lump sum $\div 18,000$ static-budget RAM-hours $=\$ 1.60$ per RAM hour

Allocated $\mathrm{FOH}=14,850$ RAM hours $\times \$ 1.60$ per RAM hour $=\$ 23,760$
d. $P V V=\$ 28,800-\$ 23,760=\$ 5,040 \mathrm{U}$
e. \quad FOH flexible budget variance $=\mathrm{FOH}$ spending variance $=\$ 1,575 \mathrm{U}$

Allocated fixed overhead is $\$ 23,760$. The actual fixed overhead cost is $\$ 30,375$. Therefore, fixed overhead is underallocated by $\$ 6,615$.

8-42 (30 min.) Direct-cost and overhead variances, income statement.

Total standard production costs are based on 80,000 units of output.
Direct materials,
$80,000 \times 1 \mathrm{lb} . \times \$ 1.00$
\$ 80,000

Direct manufacturing labor $80,000 \times 0.25$ hrs. $\times \$ 16.00 \quad 320,000$
Fixed manufacturing overhead Lump-sum

200,000
Total
\$600,000
Standard cost per unit $=\$ 600,000 / 80,000=\$ 7.50$ per unit
Fixed manufacturing overhead rate $=\frac{\text { Budgeted fixed manufacturing overhead }}{\text { Denominator level }}$
$=\$ 200,000 /(80,000 \times 0.25 \mathrm{hrs}$.
$=\$ 200,000 / 20,000$ hours
$=\$ 10$ per labor hour

1. Solution Exhibit $8-42$ presents a columnar presentation of the variances. Based on the exhibit, the variances are as follows:
a. Direct materials efficiency variance $=\$ 10,000 \mathrm{U}$
b. \quad Direct materials price variance $=\$ 11,000 \mathrm{U}$
c. Direct labor efficiency variance $=\$ 80,000 \mathrm{U}$
d. Direct labor price variance $=\$ 15,000 \mathrm{~F}$
e. Total manufacturing overhead spending variance $=\$ 100,000 \mathrm{U}$
f. \quad Fixed overhead flexible budget variance $=$ Spending variance $=\$ 100,000 \mathrm{U}$
g. Fixed overhead production-volume variance $=\$ 50,000 \mathrm{~F}$

Note that the total variances for the period equal:
$\$ 10,000 \mathrm{U}+\$ 11,000 \mathrm{U}+\$ 80,000 \mathrm{U}+\$ 15,000 \mathrm{~F}+\$ 100,000 \mathrm{U}+\$ 50,000 \mathrm{~F}=\$ 136,000 \mathrm{U}$.
This represents the cumulative amount by which costs were underapplied during the year.

SOLUTION EXHIBIT 8-42

	Actual Costs Incurred: Actual Input Qty. \times Actual Rate	Actual Input Qty. \times Budgeted Price		Flexible Budget: Budgeted Input Qty. Allowed for Actual Output \times Budgeted Price
Direct	(110,000 \times \$1.10)	(110,000 \times \$1)	(110,000 \times \$1)	(100,000 $\times 1 \mathrm{lb} . \times \$ 1)$
Materials	\$121,000	\$110,000	\$110,000	\$100,000
	$\underbrace{}_{\text {Price vari }} \quad \$ 11,00$	$\frac{4}{\text { Unce }}$	$\begin{array}{\|l\|l} \\ \text { Efficien } \end{array}$	$\frac{000 \mathrm{U}}{\mathrm{y} \text { variance }}$
Direct				
Manuf.	(30,000 $\times \$ 15.50$)	(30,000 \times		,000 $\times 0.25 \mathrm{hrs} \times \$ 16.00)$
Labor	\$465,000	\$480,		\$400,000
	\$,000 F	\$80,000 U	
	Pric	variance	Efficiency varian	

$\left.\left.\begin{array}{cc}\begin{array}{c}\text { Flexible Budget: } \\ \text { Budgeted Input Qty. } \\ \text { Allowed for } \\ \text { Actual Output }\end{array} & \end{array} \begin{array}{c}\text { Allocated: } \\ \text { (Budgeted Input Qty. } \\ \times \text { Budgeted Rate }\end{array}\right) ~ \begin{array}{cc}\text { Allowed for } \\ \text { Actual Output } \\ \times \text { Budgeted Rate) }\end{array}\right]$
2.

Sales Revenue $=80,000$ units sold $\times \$ 12.50$
$=\underline{\$ 1,000,000}$
Cost of Goods sold: At standard: 80,000 $\times \$ 7.50=\$ 600,000$
$(+)$ Prorated share of underapplied cost: $\$ 136,000 \times(80,000 / 100,000)=\$ 108,800$
Total
\$708,800

$$
\begin{aligned}
\text { Gross Margin } & =\$ 1,000,000(-) \$ 708,800 \\
& =\$ 291,200
\end{aligned}
$$

8-43 (40 - 50 minutes) Overhead variances, ethics

1. a. Georgia plant:

Expected output in units 2,000,000
Direct labor hours per unit
Total budgeted labor hours
$\frac{0.50}{1,000,000}$

Budgeted fixed OH rate $=\$ 2,400,000 / 1,000,000 \mathrm{DLH}=\$ 2.40$ per DLH
Alabama plant:
Expected output in units 2,100,000
Direct labor hours per unit
0.50

Total budgeted labor hours
1,050,000
Budgeted fixed OH rate $=\$ 2,205,000 / 1,050,000 \mathrm{DLH}=\$ 2.10$ per DLH
b. Allocation of common fixed costs:

To Georgia: $\$ 3,150,000 \times 2 / 3=\$ 2,100,000$
To Alabama: $\quad \$ 3,150,000 \times 1 / 3=\$ 1,050,000$

Georgia plant:

Budgeted fixed OH rate $=(\$ 2,400,000+\$ 2,100,000) / 1,000,000 \mathrm{DLH}=\$ 4.50$ per DLH

Alabama plant:

Budgeted fixed OH rate $=(\$ 2,205,000+\$ 1,050,000) / 1,050,000 \mathrm{DLH}=\$ 3.10$ per DLH
2. Variable overhead variances:

Georgia plant:

Actual
$\frac{\text { Variable Overhead }}{1,020,000 \times \$ 3.20)}$
:---:
$\$ 3,264,000$

Alabama plant:

Actual
Variable Overhead

$(1,225,000 \times \$ 3.20)$
$\$ 3,920,000$

Actual hours
\times Budgeted rate
:---:
Actual output \times Budgeted rate

3. Fixed overhead variances
a. Excluding the allocated common costs

Georgia plant:

Actual
Fixed Overhead
\$2,440,000

Alabama plant:

Actual
Fixed Overhead

Spending variance Production-volume variance
Static Budget
Fixed Overhead
Budgeted input allowed for Actual output \times Budgeted Rate $(1,950,000 \times 0.50 \times \$ 2.40)$
\$2,400,000
$\$ 60,000 \mathrm{U}$
\$2,300,000

Static Budget
Fixed Overhead

Budgeted input allowed for Actual output \times Budgeted Rate $(2,175,000 \times 0.50 \times \$ 2.10)$
\$2,283,750

$\$ 95,000 \mathrm{U}$	$\$ 78,750 \mathrm{~F}$
Spending variance	Production-volume variance

b. Including allocated common costs

Georgia plant:

Actual
Fixed Overhead

$\$ 2,440,000+(2 / 3 \times \$ 3,075,000)$

$\$ 4,490,000$$\quad$| Static Budget |
| :---: |
| Fixed Overhead |\quad| Budgeted input allowed for |
| :---: |
| Actual output \times Budgeted Rate |

Alabama plant:

Actual Fixed Overhead
$\$ 2,300,000$Static Budget Fixed Overhead
$(1 / 3 \times \$ 3,075,000)$
:---:
$\$ 3,325,000$

4. Tom Saban's attempt did not fully work. Even though he tried to allocate a significantly larger amount of common cost to the Georgia plant than to the Alabama plant, the cost becomes part of the fixed overhead rate and thus will only cause a large unfavorable spending variance for the Georgia plant if the cost itself is much larger than expected. Because the actual common costs were lower, the result was actually to shift Georgia's spending variance from unfavorable to favorable! Also, the spending variance for the Alabama plant is already larger than that of the Georgia plant, and the gap between them only increases when the common fixed costs are added to both plants. That said, the inclusion of the common fixed cost does exacerbate the impact of the underproduction by Georgia relative to budget (via the higher unfavorable production volume variance) while increasing the favorable volume variance for Alabama.
5. Common fixed costs should not be allocated to units that are being evaluated for performance because common fixed costs are not controllable by those units. Thus, the units should not be responsible for such costs.
6. Tom Saban's behavior is not ethical. He attempted to make his friend better off by manipulating costs and overhead rates, rather than focusing on which cost system would provide the best measure of relative performance among the divisions.

[^0]: * Given

[^1]: * Budgeted fixed manufacturing overhead rate per hour

 $$
 \begin{aligned}
 & =\frac{\text { Budgeted fixed manufacturing overhead }}{\text { Denominator level }} \\
 & =\$ 17,000,000 / 1,000,000 \text { machine hours } \\
 & =\$ 17 \text { per machine-hour }
 \end{aligned}
 $$

