CHAPTER 2 AN INTRODUCTION TO COST TERMS AND PURPOSES

2-1 Define cost object and give three examples.
A cost object is anything for which a separate measurement of costs is desired. Examples include a product, a service, a project, a customer, a brand category, an activity, and a department.

2-2 What is the main difference between direct costs and indirect costs?
Traceability is the main specification of direct costs, while it could be either unbeneficial or impractical to trace indirect costs to cost objects. This specification of direct costs enables costing systems to trace direct costs to a particular cost object more accurately, while we need some kinds of allocation methods for assigning indirect costs to a particular cost object.

2-3 Why do managers consider direct costs to be more accurate than indirect costs?
Managers believe that direct costs that are traced to a particular cost object are more accurately assigned to that cost object than are indirect allocated costs. When costs are allocated, managers are less certain whether the cost allocation base accurately measures the resources demanded by a cost object. Managers prefer to use more accurate costs in their decisions.

2-4 Name three factors that will affect the classification of a cost as direct or indirect.
Factors affecting the classification of a cost as direct or indirect include

- the materiality of the cost in question
- available information-gathering technology
- design of operations

2-5 Explain whether a business department can be a cost object.
Yes it can. This is because everything for which you need to know the cost of is called a cost object and a business department is one such item. For example, an organization's supplies and maintenance department is a cost object for the cost of the maintenance supplies and the maintenance employees. At a later stage in the organization's work process, the supplies and maintenance department costs will be assigned to various products, which will also be regarded as cost objects.

2-6 What is a cost driver? Give one example.
A cost driver is a variable, such as the level of activity or volume that causally affects total costs over a given time span. A change in the cost driver results in a change in the level of total costs. For example, the number of vehicles assembled is a driver of the costs of steering wheels on a motor-vehicle assembly line.

2-7 What is the relevant range? What role does the relevant-range concept play in explaining
how costs behave?
The relevant range is the band of normal activity level or volume in which there is a specific relationship between the level of activity or volume and the cost in question. Costs are described as variable or fixed with respect to a particular relevant range.

2-8 Why and when is it essential to calculate a unit cost?
Calculating a unit cost is essential in many cases, especially when managers want to take a decision regarding the pricing of different cost objects as well as when they want to accept a special order or prioritize a product mix. The unit cost calculation is vital during these cases because the manager needs to be certain that they are making the right choice by accepting or rejecting a special offer for a specific cost object.

2-9 Describe how manufacturing-, merchandising-, and service-sector companies differ from one another.

Manufacturing-sector companies purchase materials and components and convert them into various finished goods, for example automotive and textile companies.

Merchandising-sector companies purchase and then sell tangible products without changing their basic form, for example retailing or distribution.

Service-sector companies provide services or intangible products to their customers, for example, legal advice or audits.

2-10 What are three different types of inventory that manufacturing companies hold?
Manufacturing companies have one or more of the following three types of inventory:

1. Direct materials inventory. Direct materials in stock and awaiting use in the manufacturing process.
2. Work-in-process inventory. Goods partially worked on but not yet completed. Also called work in progress.
3. Finished goods inventory. Goods completed but not yet sold.

2-11 Distinguish between inventoriable costs and period costs.
Inventoriable costs are all costs of a product that are considered as assets in the balance sheet when they are incurred and that become cost of goods sold when the product is sold. These costs are included in work-in-process and finished goods inventory (they are "inventoried") to accumulate the costs of creating these assets.

Period costs are all costs in the income statement other than cost of goods sold. These costs are treated as expenses of the accounting period in which they are incurred because they are expected not to benefit future periods (because there is not sufficient evidence to conclude that such benefit exists). Expensing these costs immediately best matches expenses to revenues.

2-12 Define the following: direct material costs, direct manufacturing-labor costs, manufacturing overhead costs, prime costs, and conversion costs.

Direct material costs are the acquisition costs of all materials that eventually become part of the cost object (work in process and then finished goods) and can be traced to the cost object in an economically feasible way.

Direct manufacturing labor costs include the compensation of all manufacturing labor that can be traced to the cost object (work in process and then finished goods) in an economically feasible way.

Manufacturing overhead costs are all manufacturing costs that are related to the cost object (work in process and then finished goods) but cannot be traced to that cost object in an economically feasible way.

Prime costs are all direct manufacturing costs (direct material costs and direct manufacturing labor costs).

Conversion costs are all manufacturing costs other than direct material costs.
2-13 Why are overtime-premium and idle-time considered as indirect costs?
Overtime premium and idle-time are generally considered as indirect costs not because they cannot be traced to a particular cost object but to avoid penalizing those cost objects which have been worked on during the overtime hours and to avoid penalizing all cost objects for the unproductive time caused by lack of orders, machine or computer breakdowns, work delays, poor scheduling, and the like.

2-14 Define product cost. Describe three different purposes for computing product costs.

A product cost is the sum of the costs assigned to a product for a specific purpose. Purposes for computing a product cost include

- pricing and product mix decisions,
- contracting with government agencies, and
- preparing financial statements for external reporting under GAAP.

2-15 What are three common features of cost accounting and cost management?
Three common features of cost accounting and cost management are

- calculating the costs of products, services, and other cost objects
- obtaining information for planning and control and performance evaluation
- analyzing the relevant information for making decisions

2-16 Applewhite Corporation, a manufacturing company, is analyzing its cost structure in a project to achieve some cost savings. Which of the following statements is/are correct?
I. The cost of the direct materials in Applewhite's products is considered a variable cost.
II. The cost of the depreciation of Applewhite's plant machinery is considered a variable cost because Applewhite uses an accelerated depreciation method for both book and income tax purposes.
III. The cost of electricity for Applewhite's manufacturing facility is considered a fixed cost, even if the cost of the electricity has both variable and fixed components.

1. I, II, and III are correct.
2. I only is correct.
3. II and III only are correct.
4. None of the listed choices is correct.

SOLUTION

Choice " 2 " is correct.This question asks which of a series of statements about costs is/are correct. "All of the above" is an available option.Statement I says that the cost of the direct materials in Applewhite's products is considered a variable cost. The more Applewhite manufactures, the more the total cost of the direct materials will be. Statement I is correct.Statement II says that the cost of depreciation of Applewhite's plant machinery is considered a variable cost because Applewhite uses an accelerated depreciation method for both book and income tax purposes. Just because a cost changes over time (which is what using an accelerated depreciation method will cause) does not mean that the cost is variable. The fact that Applewhite may use the same method for book and tax purposes is irrelevant. Statement II is wrong.Statement III says that the cost of electricity for Applewhite's manufacturing facility is considered a fixed cost, even if the cost of the electricity has both variable and fixed components. The cost of the electricity would be considered a "mixed" cost, not a fixed cost. Statement III is wrong.

2-17 Comprehensive Care Nursing Home is required by statute and regulation to maintain a minimum 3 to 1 ratio of direct service staff to residents to maintain the licensure associated with the Nursing Home beds. The salary expense associated with direct service staff for the Comprehensive Care Nursing Home would most likely be classified as:

1. Variable cost.
2. Fixed cost.
3. Overhead costs.
4. Inventoriable costs.

SOLUTION

Choice " 2 " is correct.Costs that maintain production capacity and do not vary regardless of utilization are classified as fixed costs. In this instance, the salary costs of direct service staff are required to maintain capacity based on the number of residents (doctors) and will be incurred whether the facility is full or empty. The costs are fixed.Choice "1" is incorrect. Direct labor costs mandated by statute do not vary with production, they vary with the compliance requirement. Consequently direct labor costs, in this instance, are fixed, not variable. Choice " 3 " is incorrect. Direct costs related to service provider salaries are considered to be direct costs of the service, not overhead costs.Choice " 4 " is incorrect. Comprehensive Care Nursing Home is a service company and does not have any inventory and therefore no inventoriable costs.

2-18 Frisco Corporation is analyzing its fixed and variable costs within its current relevant range. As its cost driver activity changes within the relevant range, which of the following
statements is/are correct?
I. As the cost driver level increases, total fixed cost remains unchanged.
II. As the cost driver level increases, unit fixed cost increases.
III. As the cost driver level decreases, unit variable cost decreases.

1. I, II, and III are correct.
2. I and II only are correct.
3. I only is correct.
4. II and III only are correct.

SOLUTION

Choice " 3 " is correct.The question asks what happens to variable and fixed costs when cost driver activity changes (i.e., when the cost driver level increases or decreases). Statement I says that, as the cost driver level increases, total fixed cost remains unchanged. Statement I is correct. Total fixed cost will remain unchanged regardless of changes in the cost driver because total fixed cost is unaffected by changes in the cost driver.Statement II says that, as the cost driver level increases, unit fixed cost increases. This statement is asking about unit fixed cost like the previous statement asked about total fixed cost. While total fixed cost will remain unchanged regardless of changes in the cost driver, unit fixed cost will not. If the cost driver level increases, total fixed cost will remain the same, but the total number of units will increase, and unit fixed cost will decrease, not increase. Statement II is incorrect. Statement III says that as the cost driver level decreases, unit variable cost decreases. This statement is asking about unit variable cost like the previous statement asked about unit fixed cost. Unit variable cost will remain unchanged regardless of what happens to the cost driver. Statement III is incorrect.

2-19 Year 1 financial data for the ABC Company is as follows:

Sales	$\$ 5,000,000$
Direct materials	850,000
Direct manufacturing labor	$1,700,000$
Variable manufacturing overhead	400,000
Fixed manufacturing overhead	750,000
Variable SG\&A	150,000
Fixed SG\&A	250,000

Under the absorption method, Year 1 Cost of Goods sold will be:
a. $\$ 2,550,000$
b. $\$ 2,950,000$
c. $\$ 3,100,000$
d. $\$ 3,700,000$

SOLUTION

Choice "d" is correct. Under the absorption method, Cost of Goods Sold is calculated by adding direct materials, direct manufacturing labor, variable manufacturing overhead, and fixed manufacturing overhead. Therefore, Cost of Goods Sold $=\$ 850,000+\$ 1,700,000+\$ 400,000+$ $\$ 750,000=\$ 3,700,000$. Choice "a" is incorrect. This calculation only takes into account direct materials and direct manufacturing labor.
Choice " b " is incorrect. This calculation incorrectly excludes fixed manufacturing overhead.
Choice "c" is incorrect. This calculation includes variable SG\&A, but excludes fixed manufacturing overhead.

2-20 The following information was extracted from the accounting records of Roosevelt Manufacturing Company:

Direct materials purchased	80,000
Direct materials used	76,000
Direct manufacturing labor costs	10,000
Indirect manufacturing labor costs	12,000
Sales salaries	14,000
Other plant expenses	22,000
Selling and administrative expenses	20,000

What was the cost of goods manufactured?

1. $\$ 124,000$
2. $\$ 120,000$
3. $\$ 154,000$
4. $\$ 170,000$

SOLUTION

Explanation Choice " 2 " is correct. In this question, the problem is to calculate the cost of goods manufactured. Certain cost data are provided. The problem assumes beginning and ending work in process is zero. The cost of goods manufactured is calculated as indicated below:

Direct materials used	$\$ 76,000$
Direct manufacturing labor costs	10,000
Indirect manufacturing labor costs	12,000
Other plant expenses	$\underline{22,000}$
Total cost of goods manufactured	$\underline{\$ 120,000}$

2-21 Computing and interpreting manufacturing unit costs. Minnesota Office Products (MOP) produces three different paper products at its Vaasa lumber plant: Supreme, Deluxe, and Regular. Each product has its own dedicated production line at the plant. It currently uses the following three-part classification for its manufacturing costs: direct materials, direct manufacturing labor, and manufacturing overhead costs. Total manufacturing overhead costs of the plant in July 2017 are $\$ 150$ million ($\$ 15$ million of which are fixed). This total amount is
allocated to each product line on the basis of the direct manufacturing labor costs of each line. Summary data (in millions) for July 2017 are as follows:

	Supreme	Deluxe	Regular
Direct material costs	$\$ 89$	$\$ 57$	$\$ 60$
Direct manufacturing labor costs	$\$ 16$	$\$ 26$	$\$ 8$
Manufacturing overhead costs	$\$ 48$	$\$ 78$	$\$ 24$
Units produced	125	150	140

Required:

1. Compute the manufacturing cost per unit for each product produced in July 2017.
2. Suppose that, in August 2017, production was 150 million units of Supreme, 190 million units of Deluxe, and 220 million units of Regular. Why might the July 2017 information on manufacturing cost per unit be misleading when predicting total manufacturing costs in August 2017?

SOLUTION

(15 min.) Computing and interpreting manufacturing unit costs.
1.

	Supreme	(in millions) Deluxe	Regular	Total
Direct material cost	\$ 89.00	\$ 57.00	\$60.00	\$206.00
Direct manuf. labor costs	16.00	26.00	8.00	50.00
Manufacturing overhead costs	48.00	78.00	24.00	150.00
Total manuf. costs	153.00	161.00	92.00	406.00
Fixed costs allocated at a rate of $\$ 15 \mathrm{M} \div \$ 50 \mathrm{M}$ (direct mfg. labor) equal to $\$ 0.30$ per dir. manuf. labor dollar $(0.30 \times \$ 16 ; 26 ; 8)$	4.80	7.80	2.40	15.00
Variable costs	\$148.20	\$153.20	\$89.60	\$391.00
Units produced (millions)	125	150	140	
Manuf. cost per unit (Total manuf costs \div units produced)	\$1.2240	\$1.0733	\$0.6571	
Variable manuf. cost per unit (Variable manuf. costs				
\div Units produced)	\$1.1856	\$1.0213	\$0.6400	
	Supreme	(in millions) Deluxe	Regular	Total

2. Based on total manuf. cost
per unit $(\$ 1.2240 \times 150$;

$\$ 1.0733 \times 190 ; \$ 0.6571 \times 220)$	$\$ 183.60$	$\$ 203.93$	$\$ 144.56$	$\underline{\underline{\$ 532.09}}$
Correct total manuf. costs based on variable manuf. costs plus fixed costs equal				
Variable costs $(\$ 1.1856 \times 150 ;$	$\$ 177.84$	$\$ 194.05$	$\$ 140.80$	$\$ 512.69$
$\$ 1.0213 \times 190 ; \$ 0.64 \times 220)$				

The total manufacturing cost per unit in requirement 1 includes $\$ 15$ million of indirect manufacturing costs that are fixed irrespective of changes in the volume of output per month, while the remaining variable indirect manufacturing costs change with the production volume. Given the unit volume changes for August 2017, the use of total manufacturing cost per unit from the past month at a different unit volume level (both in aggregate and at the individual product level) will overestimate total costs of $\$ 532.09$ million in August 2017 relative to the correct total manufacturing costs of $\$ 527.69$ million calculated using variable manufacturing cost per unit times units produced plus the fixed costs of $\$ 15$ million.

2-22 Direct, indirect, fixed, and variable costs. Sumitomo Cable manufactures various types of aluminum and copper cables which it sells directly to retail outlets through its distribution channels. The manufacturing process for producing cables includes a process called wire draw in which the aluminum and copper rods are pulled through a series of synthetic dies, which gradually decrease in size. The wires are then passed through an extruder, where either a single or a double coating of plastic is applied. These insulated wires are twisted into pairs by the Twisting and Stranding Department. The final shape is given to the wires by the Jacketing and Packaging department after carrying out the process of quality control.

Required:

1. Costs involved in the different processes are listed below. For each cost, indicate whether it is a direct variable, direct fixed, indirect variable, or indirect fixed cost, assuming that the "units of production of each kind of wire" is the cost object.

Costs:

Aluminum and copper rods
Insulating materials
Wages for wire draw
Depreciation on machineries
Depreciation on factory building
Insurance on factory building

Consumable stores and dies
Wages for machine operators
Power

Quality control
Repairs to machines
Normal wastages and spoilages
Store-keeper's salary
Material testing
Materials used by jacketing and packaging department
Factory general utilities
Fuel for factory generator
Supervisors' salaries
2. If the cost object were the "Jacketing and Packaging department" instead, which costs from requirement 1 would now be direct instead of indirect costs?

SOLUTION

(15 min.) Direct, indirect, fixed, and variable costs.

1.

- Aluminium and copper rods-direct, variable
- Insulating materials-direct, variable
- Wages for wire draw-direct, variable
- Depreciation on machineries-indirect, fixed (it's a mixed cost because even if there is no production certain amount of depreciation will be always there. However, if depreciation is calculated on the basis of units produced or machine hours worked, it will be variable)
- Depreciation on factory building-indirect, fixed (it's a mixed cost because even if there is no production certain amount of depreciation will be always there. However, if depreciation is calculated on the basis of units produced or machine hours worked, it will be variable)
- Insurance on factory building-indirect, fixed
- Consumable stores and dies-indirect, variable
- Wages for machine operators-direct, variable (or fixed if the labors are paid under a monthly contract)
- Power-direct, variable (or indirect if power bill is generated from a single meter)
- Quality control-indirect, fixed (sometimes partly variable and party fixed because cost of quality control goes up with the increase in production)
- Repairs of machines-indirect, partly variable and partly fixed (because a certain amount of repairs is always necessary though it may go up with the increase of production)
- Normal wastage and spoilage-direct, variable (it's direct if it can be directly attributable to each kind of wire else it's indirect. It's variable because with the increase of production and resultant material consumption, normal wastages and spoilages may go up)
- Store-keeper's salary-indirect, fixed
- Material testing-direct, variable (or fixed if it is carried out by the permanent staff); however, material testing considered indirect if materials are being tested in large batches, in which case we cannot trace the cost of testing of each kind of wire.
- Materials used by Jacketing \& Packaging department-indirect, variable (indirect because segregation of materials used for different of kind of wires is difficult)
- Factory general utilities-indirect, variable (e.g. factory electricity may consist of a fixed monthly cost as well as a cost per unit of electricity consumed)
- Fuel for factory generator-indirect, variable (it is not variable because it does not vary proportionately with the production volume, it's neither fixed because more production may require more generator to be used in case of necessity)
- Supervisors' salaries-indirect, fixed (indirect because it cannot be attributable to each kind of wire)

2. If the cost object is the Jacketing and Packaging Department, then anything directly associated with this Department will be a direct cost. This will include:

- Materials used by Jacketing and Packaging Department
- Supervisor's salaries for Jacketing and Packaging Department
- Depreciation for machines used in Jacketing and Packaging Department
- Repairs of machine (of the Jacketing and Packaging Department)
- Consumable stores and dies (if directly attributable to the Jacketing and Packaging Department)
- Quality control (if the Jacketing and Packaging Department carries out the quality control)
Of course wages of machine operators and power bill for the machines used in the Jacketing and Packaging Department will also be a direct cost of these Departments, but they are already a direct cost of each kind of wire produced.

2-23 Classification of costs, service sector. Market Focus is a marketing research firm that organizes focus groups for consumer-product companies. Each focus group has eight individuals who are paid $\$ 60$ per session to provide comments on new products. These focus groups meet in hotels and are led by a trained, independent marketing specialist hired by Market Focus. Each specialist is paid a fixed retainer to conduct a minimum number of sessions and a per session fee of $\$ 2,200$. A Market Focus staff member attends each session to ensure that all the logistical aspects run smoothly.

Required:

Classify each cost item $(\mathbf{A}-\mathbf{H})$ as follows:
a. Direct or indirect (D or I) costs of each individual focus group.
b. Variable or fixed (V or F) costs of how the total costs of Market Focus change as the number of focus groups conducted changes. (If in doubt, select on the basis of whether the total costs will change substantially if there is a large change in the number of groups conducted.)
You will have two answers (D or I; V or F) for each of the following items:

Cost Item

D or I Vor F
A.Payment to individuals in each focus group to provide comments on new products
B. Annual subscription of Market Focus to Consumer Reports magazine
C. Phone calls made by Market Focus staff member to confirm individuals will attend a focus group session (Records of individual calls are not kept.)
D. Retainer paid to focus group leader to conduct 18 focus groups per year on new medical products
E. Recruiting cost to hire marketing specialists
F. Lease payment by Market Focus for corporate office
G. Cost of tapes used to record comments made by individuals in a focus group session (These tapes are sent to the company whose products are being tested.)
H. Gasoline costs of Market Focus staff for company-owned vehicles (Staff
members submit monthly bills with no mileage breakdowns.)
I. Costs incurred to improve the design of focus groups to make them more effective

SOLUTION

(15-20 min.) Classification of costs, service sector.

Cost object: Each individual focus group
Cost variability: With respect to the number of focus groups
There may be some debate over classifications of individual items, especially with regard to cost variability.

Cost Item	D or I	V or F
A	D	V
B	I	F
C	I	F^{a}
D	I	F
E	I	V
F	I	F
G	D	V
H	I	V^{b}
I	I	F

${ }^{\mathrm{a}}$ Some students will note that phone call costs are variable when each call has a separate charge. It is a fixed cost if Market Focus has a flat monthly charge for a line, irrespective of the amount of usage.
${ }^{\mathrm{b}}$ Gasoline costs are likely to vary with the number of focus groups. However, vehicles likely serve multiple purposes, and detailed records may be required to examine how costs vary with changes in one of the many purposes served.

2-24 Classification of costs, merchandising sector. Band Box Entertainment (BBE) operates a large store in Atlanta, Georgia. The store has both a movie (DVD) section and a music (CD) section. BBE reports revenues for the movie section separately from the music section.

Required:
Classify each cost item ($\mathbf{A}-\mathbf{H}$) as follows:
a. Direct or indirect (D or I) costs of the total number of DVDs sold.
b. Variable or fixed (V or F) costs of how the total costs of the movie section change as the total number of DVDs sold changes. (If in doubt, select on the basis of whether the total costs will change substantially if there is a large change in the total number of DVDs sold.)
You will have two answers (D or I; V or F) for each of the following items:
A. Annual retainer paid to a video distributor
B. Cost of store manager's salary
C. Costs of DVDs purchased for sale to customers
D. Subscription to DVD Trends magazine
E. Leasing of computer software used for financial budgeting at the BBE store
F. Cost of popcorn provided free to all customers of the BBE store
G. Cost of cleaning the store every night after closing
H. Freight-in costs of DVDs purchased by BBE

SOLUTION

(15-20 min.) Classification of costs, merchandising sector.

Cost object: DVDs sold in movie section of store
Cost variability: With respect to changes in the number of DVDs sold
There may be some debate over classifications of individual items, especially with regard to cost variability.

Cost Item	D or I	V or \mathbf{F}
A	D	F
B	I	F
C	D	V
D	D	F
E	I	F
F	I	V
G	I	F
H	D	V

2-25 Classification of costs, manufacturing sector. The Cooper Furniture Company of Potomac, Maryland, assembles two types of chairs (Recliners and Rockers). Separate assembly lines are used for each type of chair.

Required:
Classify each cost item (A-I) as follows:
a. Direct or indirect (D or I) cost for the total number of Recliners assembled.
b. Variable or fixed (V or F) cost depending on how total costs change as the total number of Recliners assembled changes. (If in doubt, select on the basis of whether the total costs will change substantially if there is a large change in the total number of Recliners assembled.)

You will have two answers (D or I; V or F) for each of the following items:

Cost Item	D or I V or F

Cost Item	D or I V or F
A. Cost of fabric used on Recliners	
B. Salary of public relations manager for Cooper Furniture	
C. Annual convention for furniture manufacturers; generally	
Cooper Furniture attends	
D. Cost of lubricant used on the Recliner assembly line	
E. Freight costs of Recliner frames shipped from Durham to	
Potomac, MD	
F. Electricity costs for Recliner assembly line (single bill	
covers entire plant)	
G. Wages paid to temporary assembly-line workers hired in	
periods of high Recliner production (paid on hourly basis)	
H. Annual fire-insurance policy cost for Potomac, MD plant	
I. Wages paid to plant manager who oversees the assembly	
lines for both chair types	

SOLUTION

(15-20 min.) Classification of costs, manufacturing sector.

Cost object: Type of chair assembled (Recliners or Rockers)
Cost variability: With respect to changes in the number of Recliners assembled
There may be some debate over classifications of individual items, especially with regard to cost variability.

Cost Item	D or I	V or F
A	D	V
B	I	F
C	I	F
D	D	V
E	D	V
F	I	V
G	D	V
H	I	F
I	I	F

2-26 Variable costs, fixed costs, total costs. Bridget Ashton is getting ready to open a small restaurant. She is on a tight budget and must choose between the following long-distance phone plans:

Plan A: Pay 10 cents per minute of long-distance calling.
Plan B: Pay a fixed monthly fee of $\$ 15$ for up to 240 long-distance minutes and 8 cents per minute thereafter (if she uses fewer than 240 minutes in any month, she still pays $\$ 15$ for the month).

Plan C: Pay a fixed monthly fee of $\$ 22$ for up to 510 long-distance minutes and 5 cents per minute thereafter (if she uses fewer than 510 minutes, she still pays $\$ 22$ for the month).

Required:

1. Draw a graph of the total monthly costs of the three plans for different levels of monthly longdistance calling.
2. Which plan should Ashton choose if she expects to make 100 minutes of long-distance calls? 240 minutes? 540 minutes?

SOLUTION

(20 min.) Variable costs, fixed costs, total costs.
1.

Minutes/month	$\mathbf{0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 4 0}$	$\mathbf{3 0 0}$	$\mathbf{3 2 7 . 5}$	$\mathbf{3 5 0}$	$\mathbf{4 0 0}$	$\mathbf{4 5 0}$	$\mathbf{5 1 0}$	$\mathbf{5 4 0}$	$\mathbf{6 0 0}$	$\mathbf{6 5 0}$
Plan A $(\$ /$ month $)$	0	5	10	15	20	24	30	32.75	35	40	45	51	54	60	65
Plan B $(\$ /$ month $)$	15	15	15	15	15	1519.80	22	23.80	27.80	31.80	36.60	39	43.80	47.80	
Plan C $(\$ /$ month $)$	22	22	22	22	22	22	22	22	22	22	22	22	23.50	26.50	29

2. In each region, Ashton chooses the plan that has the lowest cost. From the graph (or from calculations)*, we can see that if Ashton expects to use $0-150$ minutes of long-distance each month, she should buy Plan A; for 150-327.5 minutes, Plan B; and for more than 327.5 minutes, Plan C. If Ashton plans to make 100 minutes of long-distance calls each month, she should choose Plan A; for 240 minutes, choose Plan B; for 540 minutes, choose Plan C.
*Let x be the number of minutes when Plan A and Plan B have equal cost

$$
\begin{aligned}
\$ 0.10 x & =\$ 15 \\
x & =\$ 15 \div \$ 0.10 \text { per minute }=150 \text { minutes } .
\end{aligned}
$$

Let y be the number of minutes when Plan B and Plan C have equal cost

$$
\begin{aligned}
& \$ 15+\$ 0.08(y-240)=\$ 22 \\
& \$ 0.08(y-240)=\$ 22-\$ 15=\$ 7 \\
& y-240=\frac{\$ 7}{\$ 0.08}=87.5 \\
& y=87.5+240=327.5 \text { minutes }
\end{aligned}
$$

2-27 Variable and Fixed Costs. Consolidated Motors specializes in producing one specialty vehicle. It is called Surfer and is styled to easily fit multiple surfboards in its back area and topmounted storage racks.

Consolidated has the following manufacturing costs:
Plant management costs, $\$ 1,992,000$ per year
Cost of leasing equipment, $\$ 1,932,000$ per year
Workers' wages, $\$ 800$ per Surfer vehicle produced
Direct materials costs: Steel, \$1,400 per Surfer; Tires, \$150 per tire, each Surfer takes 5 tires (one spare).
City license, which is charged monthly based on the number of tires used in production:

$0-500$ tires	$\$ 40,040$
$501-1,000$ tires	$\$ 65,000$
more than 1,000 tires	$\$ 249,870$

Consolidated currently produces 170 vehicles per month.
Required:

1. What is the variable manufacturing cost per vehicle? What is the fixed manufacturing cost per month?
2. Plot a graph for the variable manufacturing costs and a second for the fixed manufacturing costs per month. How does the concept of relevant range relate to your graphs? Explain.
3. What is the total manufacturing cost of each vehicle if 80 vehicles are produced each month? 205 vehicles? How do you explain the difference in the manufacturing cost per unit?

SOLUTION

(15-20 min.) Variable costs and fixed costs.

1. Variable manufacturing cost per vehicle

Steel	$\$ 1,400$ per Surfer
Tires	750 per Surfer
Direct manufacturing labor	800 per Surfer
\quad Total	$\underline{\$ 2,950}$ per Surfer

Fixed manufacturing costs per month
Plant management costs $(\$ 1,992,000 \div 12) \quad \$ 166,000$
Cost of leasing equipment $(\$ 1,932,000 \div 12) \quad 161,000$
City license (for 170 surfers or 850 tires) $\quad 65,000$
Total fixed manufacturing costs $\$ 392,000$
Fixed costs per month (1 surfer takes 5 tires)
0 to 100 surfers per month $\quad=\$ 166,000+\$ 161,000+\$ 40,040=\$ 367,040$
101 to 200 surfers per month $=\$ 166,000+\$ 161,000+\$ 65,000=\$ 392,000$
More than 200 surfers per month $=\$ 166,000+\$ 161,000+\$ 249,870=\$ 576,870$
2.

The concept of relevant range is potentially relevant for both graphs. However, the question does not place restrictions on the unit variable costs. The relevant range for the total fixed costs is from 0 to 100 surfers; 101 to 200 surfers; more than 200 surfers. Within these ranges, the total fixed costs do not change in total.
3.

Vehicles Produced per Month (1)	Tires Produced per Month $(\mathbf{2})=(\mathbf{1}) \times \mathbf{5}$	Fixed Cost per Month $\mathbf{(3)}$	Unit Fixed Cost per Vehicle $\mathbf{(4)}=\mathbf{F C} \div(\mathbf{1})$	Unit Variable Cost per Vehicle $\mathbf{(5)}$	Unit Total Cost per Vehicle
(6) $=\mathbf{(4)}+\mathbf{(5)}$					

The unit cost for 80 vehicles produced per month is $\$ 7,538$, while for 205 vehicles it is only $\$ 5,764$. This difference is caused by the fixed cost increment of $\$ 209,830$ (an increase of $50 \%, \$ 209,830 \div \$ 367,040=57 \%$) being spread over an increment of $125(205-80)$ vehicles (an increase of $156 \%, 125 \div 80$). The fixed cost per unit is therefore lower.

2-28 Variable costs, fixed costs, relevant range. Dotball Candies manufactures jaw-breaker candies in a fully automated process. The machine that produces candies was purchased recently and can make 4,400 per month. The machine costs $\$ 9,500$ and is depreciated using straight-line depreciation over 10 years assuming zero residual value. Rent for the factory space and warehouse and other fixed manufacturing overhead costs total $\$ 1,300$ per month.

Dotball currently makes and sells 3,100 jaw-breakers per month. Dotball buys just enough materials each month to make the jaw-breakers it needs to sell. Materials cost 10 cents per jawbreaker. Next year Dotball expects demand to increase by 100%. At this volume of materials purchased, it will get a 10% discount on price. Rent and other fixed manufacturing overhead costs will remain the same.

Required:

1. What is Dotball's current annual relevant range of output?
2. What is Dotball's current annual fixed manufacturing cost within the relevant range? What is the annual variable manufacturing cost?
3. What will Dotball's relevant range of output be next year? How, if at all, will total annual fixed and variable manufacturing costs change next year? Assume that if it needs to Dotball could buy an identical machine at the same cost as the one it already has.

SOLUTION

(20 min.) Variable costs, fixed costs, relevant range.

1. The production capacity is 4,400 jaw breakers per month. Therefore, the current annual relevant range of output is 0 to 4,400 jaw breakers $\times 12$ months $=0$ to 52,800 jaw breakers.
2. Current annual fixed manufacturing costs within the relevant range are $\$ 1,300 \times 12=$ $\$ 15,600$ for rent and other overhead costs, plus $\$ 9,500 \div 10=\$ 950$ for depreciation, totaling \$16,550.
The variable costs, the materials, are 10 cents per jaw breaker, or $\$ 3,720$ ($\$ 0.10$ per jaw breaker $\times 3,100$ jaw breakers per month $\times 12$ months) for the year.
3. If demand changes from 3,100 to 6,200 jaw breakers per month, or from $3,100 \times 12=37,200$ to $6,200 \times 12=74,400$ jaw breakers per year, Dotball will need a second machine. Assuming Dotball buys a second machine identical to the first machine, it will increase capacity from 4,400 jaw breakers per month to 8,800 . The annual relevant range will be between $4,400 \times 12$ $=52,800$ and $8,800 \times 12=105,600$ jaw breakers.
Assume the second machine costs $\$ 9,500$ and is depreciated using straight-line depreciation over 10 years and zero residual value, just like the first machine. This will add $\$ 950$ of depreciation per year.
Fixed costs for next year will increase to $\$ 17,500$ from $\$ 16,550$ for the current year $+\$ 950$ (because rent and other fixed overhead costs will remain the same at $\$ 15,600$). That is, total fixed costs for next year equal $\$ 950$ (depreciation on first machine) $+\$ 950$ (depreciation on second machine) $+\$ 15,600$ (rent and other fixed overhead costs).
The variable cost per jaw breaker next year will be $90 \% \times \$ 0.10=\$ 0.09$. Total variable costs equal $\$ 0.09$ per jaw breaker $\times 74,400$ jaw breakers $=\$ 6,696$.
If Dotball decides not to increase capacity and meet only that amount of demand for which it has available capacity (4,400 jaw breakers per month or $4,400 \times 12=52,800$ jaw breakers per year), the variable cost per unit will be the same at $\$ 0.10$ per jaw breaker. Annual total variable manufacturing costs will increase to $\$ 0.10 \times 4,400$ jaw breakers per month $\times 12$ months $=\$ 5,280$. Annual total fixed manufacturing costs will remain the same, $\$ 16,550$.

2-29 Cost drivers and value chain. Torrance Technology Company (TTC) is developing a new touch-screen smartphone to compete in the cellular phone industry. The company will sell the phones at wholesale prices to cell phone companies, which will in turn sell them in retail stores to the final customer. TTC has undertaken the following activities in its value chain to bring its product to market:
A. Perform market research on competing brands
B. Design a prototype of the TTC smartphone
C. Market the new design to cell phone companies
D. Manufacture the TTC smartphone
E. Process orders from cell phone companies
F. Deliver the TTC smartphones to the cell phone companies
G. Provide online assistance to cell phone users for use of the TTC smartphone
H. Make design changes to the smartphone based on customer feedback

During the process of product development, production, marketing, distribution, and customer service, TTC has kept track of the following cost drivers:

Number of smartphones shipped by TTC
Number of design changes
Number of deliveries made to cell phone companies
Engineering hours spent on initial product design
Hours spent researching competing market brands
Customer-service hours
Number of smartphone orders processed
Machine hours required to run the production equipment

Required:

1. Identify each value-chain activity listed at the beginning of the exercise with one of the following value-chain categories:
a. Design of products and processes
b. Production
c. Marketing
d. Distribution
e. Customer service
2. Use the list of preceding cost drivers to find one or more reasonable cost drivers for each of the activities in TTC's value chain.

SOLUTION

(20 min.) Cost drivers and value chain.

1. Perform market research on competing brands-Design of products and processes

Design a prototype of the TTC smartphone-Design of products and processes
Market the new design to cell phone companies-Marketing
Manufacture the TTC smartphone-Production
Process orders from cell phone companies-Distribution
Deliver the TTC smartphones to the cell phone companies-Distribution
Provide online assistance to cell phone users for use of the TTC smartphone-Customer service
Make design changes to the TTC smartphone based on customer feedback-Design of products and processes
2.

Value Chain

Category	Activity	Cost Driver		
Design of products and processes	Perform market research on competing brands	Hours spent researching competing market brands		
	Design a prototype of the TTC smartphone Make design changes to the smartphone based on customer feedback	Engineering hours spent on initial product design Number of design changes		
Production	Manufacture the TTC smartphones	Machine hours required to run the production equipment		
Distribution	Market the new design to cell phone companies	Number of smartphones shipped by TTC Process orders from cell phone companies		Number of smartphone orders processed
:---:				

2-30 Cost drivers and functions. The representative cost drivers in the right column of this table are randomized so they do not match the list of functions in the left column.

Function	Representative Cost Driver
1. Inspection of materials	A. Number of batches produced
2. Accounts receivable	B. Number of sales orders
3. Employee training	C. Number of machines repaired
4. Repairs of machines	D. Number of labors supervised
5. Testing of samples	E. Number of purchase orders
6. Despatching	F. Number of bills issued to customers
7. Supervisions	G. Number of employees trained
equired:	
Match each function with its representative cost driver.	
Give a second example of a cost driver for each function.	

SOLUTION

(10-15 min.) Cost drivers and functions.
1.

Function	Representative Cost Driver
1. Inspection of materials	E. Number of purchase orders
2. Accounts receivable	F. Number of bills issued to customers
3. Employee training	G. Number of employees trained
4. Repairs of machines	C. Number of machines repaired
5. Testing of samples	A. Number of batches produced
6. Despatching	B. Number of sales orders
7. Supervisions	D. Number of labors supervised

2.

Function

1. Inspection of materials
2. Accounts receivable
3. Employee training
4. Repairs of machines
5. Testing of samples
6. Despatching
7. Supervisions

Representative Cost Driver

A. Number of inspections carried out
B. Number of checks received
C. Number of training hours
D. Number of machine hours operated
E. Number of testing conducted
F. Number of despatches carried out
G. Number of supervision hours

2-31 Total costs and unit costs, service setting. The Big Event (TBE) recently started a business organizing food and music at weddings and other large events. In order to better understand the profitability of the business, the owner has asked you for an analysis of costswhat costs are fixed, what costs are variable, and so on, for each event. You have the following cost information:

Music costs: $\$ 10,000$ per event
Catering costs:
Food: $\$ 65$ per guest
Setup/cleanup: \$15 per guest
Fixed fee: $\$ 4,000$ per event
TBE has allowed the caterer, who is also new in business, to place business cards on each table as a form of advertising. This has proved quite effective, and the caterer gives TBE a discount of $\$ 5$ per guest in exchange for allowing the caterer to advertise.

Required:

1. Draw a graph depicting fixed costs, variable costs, and total costs for each event versus the number of guests.
2. Suppose 150 persons attend the next event. What is TBE's total net cost and the cost per attendee?
3. Suppose instead that 200 persons attend. What is TBE's total net cost and the cost per attendee.
4. How should TBE charge customers for its services? Explain briefly.

SOLUTION

(20 min.) Total costs and unit costs

1.

| Number of guests | 0 | 50 | 100 | 150 | 200 | 250 | 300 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Variable cost per guest
(\$80 caterer charge -

$\$ 5$ discount for advertising)	$\$ 75$	$\$ 75$	$\$ 75$	$\$ 75$	$\$ 75$	$\$ 75$	$\$ 75$	
Fixed Costs	$\$ 14,000$	$\$ 14,000$		$\$ 14,000$		$\$ 14,000$		$\$ 14,000$

Variable costs (number of guests \times variable cost per

guest)	0	3,750	7,500	11,250
Total costs (fixed + variable)	$\$ 14,000$	$18,75022,500$		
The	$\$ 17,750 \$ 21,500 \$ 25,250 \$ 29,000 \$ 32,750 \$ 36,500$			

2.

Number of guests	0	50	100	150	200	250	300
Total costs	$\$ 14,000$	$\$ 17,750$	$\$ 21,500$	$\$ 25,250$	$\$ 29,000$	$\$ 32,750$	$\$ 36,500$

(fixed + variable)
Costs per guest (total costs \div number of guests $\quad \$ 355 \quad \$ 215 \quad \$ 168.33$ \$ $145 \quad \$ 131 \quad \$ 121.67$

As shown in the table above, for 150 attendees the total cost will be $\$ 25,250$, and the cost per attendee will be $\$ 168.33$.
As shown in the table in requirement 2, for 200 attendees, the total cost will be $\$ 29,000$, and the cost per attendee will be $\$ 145$.
TBE should charge customers based on the number of guests. As the number of guests increase, TBE could offer price discounts because its fixed costs would be spread over a larger number of guests.

Alternatively, TBE could charge a flat fee of $\$ 10,000$ plus a margin for the music. The catering costs would then vary less with the number of guests because only $\$ 4,000$ of fixed costs would be spread over the number of guests. For 100 guests, the fixed catering cost per guest would be $\$ 40$ ($\$ 4,000 \div 100$ guests); for 200 guests, it would be $\$ 20$ ($\$ 4,000 \div 200$ guests). TBE's total cost would be $\$ 115$ (variable cost per guest of $\$ 75+$ fixed catering cost per guest of $\$ 40$) for 100 guests and $\$ 95$ (variable cost per guest of $\$ 75+$ fixed catering cost per guest of $\$ 20)$ for 200 guests.

2-32 Total and unit cost, decision making. Gayle's Glassworks makes glass flanges for scientific use. Materials cost $\$ 1$ per flange, and the glass blowers are paid a wage rate of $\$ 28$ per hour. A glass blower blows 10 flanges per hour. Fixed manufacturing costs for flanges are $\$ 28,000$ per period. Period (nonmanufacturing) costs associated with flanges are $\$ 10,000$ per period and are fixed.

Required:

1. Graph the fixed, variable, and total manufacturing cost for flanges, using units (number of flanges) on the x-axis.
2. Assume Gayle's Glassworks manufactures and sells 5,000 flanges this period. Its competitor, Flora's Flasks, sells flanges for $\$ 10$ each. Can Gayle sell below Flora's price and still make a profit on the flanges?
3. How would your answer to requirement 2 differ if Gayle's Glassworks made and sold 10,000 flanges this period? Why? What does this indicate about the use of unit cost in decision making?

SOLUTION

(25 min.) Total and unit cost, decision making.
1.

Note that the production costs include the $\$ 28,000$ of fixed manufacturing costs but not the $\$ 10,000$ of period costs. The variable cost is $\$ 1$ per flange for materials, and $\$ 2.80$ per flange ($\$ 28$ per hour divided by 10 flanges per hour) for direct manufacturing labor for a total of $\$ 3.80$ per flange.
2. The inventoriable (manufacturing) cost per unit for 5,000 flanges is
$\$ 3.80 \times 5,000+\$ 28,000=\$ 47,000$
Average (unit) cost $=\$ 47,000 \div 5,000$ units $=\$ 9.40$ per unit.
This is below Flora's selling price of $\$ 10$ per flange. However, in order to make a profit, Gayle's Glassworks also needs to cover the period (non-manufacturing) costs of $\$ 10,000$, or $\$ 10,000 \div 5,000=\$ 2$ per unit.
Thus total costs, both inventoriable (manufacturing) and period (non-manufacturing), for the flanges is $\$ 9.40+\$ 2=\$ 11.40$. Gayle's Glassworks cannot sell below Flora's price of $\$ 10$ and still make a profit on the flanges.

Alternatively,
At Flora's price of \$10 per flange:

Revenue	$\$ 10$	$\times 5,000$	$=$	$\$ 50,000$
Variable costs	$\$ 3.80$	$\times 5,000$	$=$	19,000
Fixed costs				
Operating loss			$\underline{38,000}$	
		$\underline{(7,000)}$		

Gayle's Glassworks cannot sell below $\$ 10$ per flange and make a profit. At Flora's price of $\$ 10$ per flange, the company has an operating loss of $\$ 7,000$.
3. If Gayle's Glassworks produces 10,000 units, then total inventoriable cost will be: Variable cost ($\$ 3.80 \times 10,000$) + fixed manufacturing costs, $\$ 28,000=$ total manufacturing costs, $\$ 66,000$.

Average (unit) inventoriable (manufacturing) cost will be $\$ 66,000 \div 10,000$ units $=\$ 6.60$ per flange

Unit total cost including both inventoriable and period costs will be $(\$ 66,000+\$ 10,000) \div 10,000=\$ 7.60$ per flange, and Gayle's Glassworks will be able to sell the flanges for less than Flora's price of $\$ 10$ per flange and still make a profit.

Alternatively,
At Flora's price of $\$ 10$ per flange:

Revenue	$\$ 10$	$\times 10,000$	$=$	$\$ 100,000$	
Variable costs	$\$ 3.80$	\times	10,000	$=$	38,000
Fixed costs					$\underline{38,000}$
Operating income					$\underline{\$ 24,000}$

Gayle's Glassworks can sell at a price below $\$ 10$ per flange and still make a profit. The company earns operating income of $\$ 24,000$ at a price of $\$ 10$ per flange. The company will earn operating income as long as the price exceeds $\$ 7.60$ per flange.

The reason the unit cost decreases significantly is that inventoriable (manufacturing) fixed costs and fixed period (non-manufacturing) costs remain the same regardless of the number of units produced. So, as Gayle's Glassworks produces more units, fixed costs are spread over more units, and cost per unit decreases. This means that if you use unit costs to make decisions about pricing, and which product to produce, you must be aware that the unit cost only applies to a particular level of output.

2-33 Inventoriable costs versus period costs. Each of the following cost items pertains to one of these companies: Best Buy (a merchandising-sector company), KitchenAid (a manufacturingsector company), and HughesNet (a service-sector company):
a. Cost of phones and computers available for sale in Best Buy's electronics department
b. Electricity used to provide lighting for assembly-line workers at a KitchenAid manufacturing plant
c. Depreciation on HughesNet satellite equipment used to provide its services
d. Electricity used to provide lighting for Best Buy's store aisles
e. Wages for personnel responsible for quality testing of the KitchenAid products during the assembly process
f. Salaries of Best Buy's marketing personnel planning local-newspaper advertising campaigns
g. Perrier mineral water purchased by HughesNet for consumption by its software engineers
h. Salaries of HughesNet area sales managers
i. Depreciation on vehicles used to transport KitchenAid products to retail stores

Required:

1. Distinguish between manufacturing-, merchandising-, and service-sector companies.
2. Distinguish between inventoriable costs and period costs.
3. Classify each of the cost items ($\mathbf{a}-\mathbf{i}$) as an inventoriable cost or a period cost. Explain your answers.

SOLUTION

(20-30 min.) Inventoriable costs versus period costs.

1. Manufacturing-sector companies purchase materials and components and convert them into different finished goods.

Merchandising-sector companies purchase and then sell tangible products without changing their basic form.

Service-sector companies provide services or intangible products to their customers-for example, legal advice or audits.

Only manufacturing and merchandising companies have inventories of goods for sale.
2. Inventoriable costs are all costs of a product that are regarded as an asset when they are incurred and then become cost of goods sold when the product is sold. These costs for a manufacturing company are included in work-in-process and finished goods inventory (they are "inventoried") to build up the costs of creating these assets.

Period costs are all costs in the income statement other than cost of goods sold. These costs are treated as expenses of the period in which they are incurred because they are presumed not to benefit future periods (or because there is not sufficient evidence to conclude that such benefit exists). Expensing these costs immediately best matches expenses to revenues.
3. (a) Phones and computers purchased for resale by Best Buy-inventoriable cost of a merchandising company. It becomes part of cost of goods sold when the phones and computers are sold.
(b) Electricity used for lighting at KitchenAid plant-inventoriable cost of a manufacturing company. It is part of the manufacturing overhead that is included in the manufacturing cost of a finished good.
(c) Depreciation on HughesNet satellite equipment used to provide its services-period cost of a service company. HughesNet has no inventory of goods for sale and, hence, no inventoriable cost.
(d) Electricity used to provide lighting for Best Buy's store aisles-period cost of a merchandising company. It is a cost that benefits the current period, and it is not traceable to goods purchased for resale.
(e) Wages for personnel responsible for quality testing of the KitchenAid products during the assembly process-inventoriable cost of a manufacturing company. It is usually part of the manufacturing overhead that is included in the manufacturing cost of a finished good (if quality testing is done for several products), but may be a direct cost, if quality testing is done by personnel who work on a specific KitchenAid product line such as the KitchenAid dishwasher.
(f) Salaries of Best Buy's marketing personnel-period cost of a merchandising company. It is not cost of goods purchased for resale. It is presumed not to benefit future periods (or at least not to have sufficiently reliable evidence to estimate such future benefits).
(g) Perrier mineral water consumed by HughesNet's software engineers-period cost of a service company. HughesNet has no inventory of goods for sale and, hence, no inventoriable cost.
(h) Salaries of HughesNet's marketing personnel—period cost of a service company. HughesNet has no inventory of goods for sale and, hence, no inventoriable cost.
(i) Depreciation on vehicles used to transport KitchenAid products to retail storesperiod cost of a manufacturing company. This is a distribution cost, not an inventoriable cost.

2-34 Computing cost of goods purchased and cost of goods sold. The following data are for Marvin Department Store. The account balances (in thousands) are for 2017.
Marketing, distribution, and customer-service costs \$ 37,000
Merchandise inventory, January 1, 2017 27,000
Utilities 17,000
General and administrative costs 43,000
Merchandise inventory, December 31, 2017 34,000
Purchases 155,000
Miscellaneous costs 4,000
Transportation-in 7,000
Purchase returns and allowances 4,000
Purchase discounts 6,000
Revenues 280,000

Required:

1. Compute (a) the cost of goods purchased and (b) the cost of goods sold.
2. Prepare the income statement for 2017.

SOLUTION

(20 min.) Computing cost of goods purchased and cost of goods sold.
1 a.
Marvin Department Store
Schedule of Cost of Goods Purchased For the Year Ended December 31, 2017
(in thousands)

Purchases		\$155,000
Add transportation-in		7,000
		162,000
Deduct:		
Purchase returns and allowances	\$4,000	
Purchase discounts	6,000	10,000
Cost of goods purchased		\$152,000
1 b . Marvin Department Store Schedule of Cost of Goods Sold For the Year Ended December 31, 2017 (in thousands)		
Beginning merchandise inventory 1/1/2017		\$ 27,000
Cost of goods purchased (see above)		152,000
Cost of goods available for sale		179,000
Ending merchandise inventory 12/31/2017		34,000
Cost of goods sold		\$145,000
2. Marvin Department Income Statement Year Ended December 3 (in thousands)		
Revenues		\$280,000
Cost of goods sold (see above)		145,000
Gross margin		135,000
Operating costs		
Marketing, distribution, and customer service costs$\$ 37,000$		
Utilities	17,000	
General and administrative costs	43,000	
Miscellaneous costs	4,000	
Total operating costs		101,000
Operating income		\$ 34,000

2-35 Cost of goods purchased, cost of goods sold, and income statement. The following data are for Huang Wong Ping Retail Outlet Stores. The account balances (in thousands) are for 2017.

Marketing and advertising costs	$\$ 54,300$
Merchandise inventory, January 1, 2017	115,800
Shipping of merchandise to customers	5,700
Depreciation on Store Fixtures	10,420
Purchases	654,000
General and administrative costs	74,800
Merchandise inventory, December 31, 2017	124,200
Merchandise freight-in	25,000
Purchase returns and allowances	32,400
Purchase discounts	22,600
Revenues	798,000

Required:

1. Compute (a) the cost of goods purchased and (b) the cost of goods sold.
2. Prepare the income statement for 2017.

SOLUTION

(20 min.) Cost of goods purchased, cost of goods sold, and income statement.
$1 a$.
Huang Wong Ping Retail Outlet Stores
Schedule of Cost of Goods Purchased For the Year Ended December 31, 2017 (in thousands)

Purchases Add freight-in		\$654,000
		25,000
		679,000
Deduct:		
Purchase returns and allowances	\$ 32,400	
Purchase discounts	22,600	55,000
Cost of goods purchased		\$624,000
$1 b$.		
For the Year	g Retail O Cost of Goo mber 31,	Stores d thousan

EA

Beginning merchandise inventory January 1, 2017	$\$ 115,800$
Cost of goods purchased (see above)	624,000
Cost of goods available for sale	739,800
Ending merchandise inventory December 31, 2017	$\underline{124,200}$
Cost of goods sold	$\underline{\$ 615,600}$

2.

Huang Wong Ping Retail Outlet Stores
 Income Statement
 For the Year Ended December 31, 2017 (in thousands)

Revenues		$\$ 798,000$
Cost of goods sold (see above)		615,600
Gargin		
Operating costs	$\$ 54,300$	
Marketing and advertising costs	10,420	
Depreciation on Store Fixtures	5,700	
Shipping of merchandise to customers	$\underline{74,800}$	
General and administrative costs		$\underline{\$ 145,220}$
Total operating costs	$\underline{\$ 7,180}$	

2-36 Flow of Inventoriable Costs. Renka's Heaters selected data for October 2017 are presented here (in millions):
Direct materials inventory 10/1/2017 \$ 105
Direct materials purchased 365
Direct materials used 385
Total manufacturing overhead costs 450
Variable manufacturing overhead costs 265
Total manufacturing costs incurred during October 2017 1,610
Work-in-process inventory 10/1/2017 230
Cost of goods manufactured 1,660
Finished-goods inventory 10/1/2017 130
Cost of goods sold 1,770

Required:
Calculate the following costs:

1. Direct materials inventory $10 / 31 / 2017$
2. Fixed manufacturing overhead costs for October 2017

EA

3. Direct manufacturing labor costs for October 2017
4. Work-in-process inventory $10 / 31 / 2017$
5. Cost of finished goods available for sale in October 2017
6. Finished goods inventory $10 / 31 / 2017$

SOLUTION

(20 min.) Flow of Inventoriable Costs.

(All numbers below are in millions).
1.

Direct materials inventory 10/1/2017 \$ 105
Direct materials purchased $\quad 365$
Direct materials available for production 470
Direct materials used
Direct materials inventory 10/31/2017
2.

Total manufacturing overhead costs \$ 450
Subtract: Variable manufacturing overhead costs (265)
Fixed manufacturing overhead costs for October 2017
3.

Total manufacturing costs incurred during October 2017
\$ 1,610
\$ $\quad 185$

Subtract: Direct materials used (from requirement 1)
Total manufacturing overhead costs
Direct manufacturing labor costs for October 2017
4.

Work-in-process inventory 10/1/2017
Total manufacturing costs incurred during October 2017
Work-in-process available for production
Subtract: Cost of goods manufactured (moved into finished goods)
Work-in-process inventory 10/31/2017
5.

Finished goods inventory 10/1/2017
Cost of goods manufactured (moved from work in process)
Cost of finished goods available for sale in October 2017
\$ 130
1,660
\$ 1,790
(450)
$\$ \quad 775$
\$ 230
1,610
1,840
$(1,660)$
$\$ \quad 180$
6.

Cost of finished goods available for sale in October 2017
(from requirement 5)
Subtract: Cost of goods sold
Finished goods inventory 10/31/2017
\$ 1,790
$(1,770)$
$\$ \quad 20$

2-37 Cost of goods manufactured, income statement, manufacturing company. Consider the following account balances (in thousands) for the Peterson Company:

Peterson Company	Beginning of $\mathbf{2 0 1 7}$	End of $\mathbf{2 0 1 7}$
Direct materials inventory	21,000	23,000
Work-in-process inventory	26,000	25,000
Finished-goods inventory	13,000	20,000
Purchases of direct materials	74,000	
Direct manufacturing labor	22,000	
Indirect manufacturing labor	17,000	
Plant insurance	7,000	
Depreciation—plant, building, and	11,000	
\quad equipment		
Repairs and maintenance-plant	3,000	
Marketing, distribution, and customer-	91,000	
\quad service costs		24,000

Required:

1. Prepare a schedule for the cost of goods manufactured for 2017.
2. Revenues for 2017 were $\$ 310$ million. Prepare the income statement for 2017.

SOLUTION

(30-40 min.) Cost of goods manufactured, income statement, manufacturing company.
1.

> Peterson Company
> Schedule of Cost of Goods Manufactured Year Ended December 31, 2017 (in thousands)

Direct materials cost

Beginning inventory, January 1, 2017
Purchases of direct materials Cost of direct materials available for use
Ending inventory, December 31, 2017
\$ 21,000
74,000
95,000
23,000
Direct materials used
Direct manufacturing labor costs
\$ 72,000
Indirect manufacturing costs
Indirect manufacturing labor

2-38 Cost of goods manufactured, income statement, manufacturing company. Consider the following account balances (in thousands) for the Carolina Corporation:

Carolina Corporation	Beginning of $\mathbf{2 0 1 7}$	End of $\mathbf{2 0 1 7}$
Direct materials inventory	124,000	73,000
Work-in-process inventory	173,000	145,000
Finished-goods inventory	240,000	206,000
Purchases of direct materials		262,000
Direct manufacturing labor		217,000
Indirect manufacturing labor	97,000	
Plant insurance	9,000	
Depreciation-plant, building, and	45,000	

Carolina Corporation	Beginning of $\mathbf{2 0 1 7}$	End of $\mathbf{2 0 1 7}$
equipment		
Plant utilities	26,000	
Repairs and maintenance-plant	12,000	
Equipment leasing costs	65,000	
Marketing, distribution, and customer-	125,000	
service costs		
General and administrative costs	71,000	

Required:

1. Prepare a schedule for the cost of goods manufactured for 2017.
2. Revenues (in thousands) for 2017 were $\$ 1,300,000$. Prepare the income statement for 2017.

SOLUTION

(30-40 min.) Cost of goods manufactured, income statement, manufacturing company.

Carolina Corporation Schedule of Cost of Goods Manufactured Year Ended December 31, 2017 (in thousands)

Direct materials costs		
Beginning inventory, January 1, 2017	\$124,000	
Purchases of direct materials	262,000	
Cost of direct materials available for use	386,000	
Ending inventory, December 31, 2014	73,000	
Direct materials used		\$313,000
Direct manufacturing labor costs		217,000
Indirect manufacturing costs		
Indirect manufacturing labor	97,000	
Plant insurance	9,000	
Depreciation-plant building \& equipment	45,000	
Plant utilities	26,000	
Repairs and maintenance-plant	12,000	
Equipment lease costs	65,000	
Total indirect manufacturing costs		254,000
Manufacturing costs incurred during 2017		784,000
Add beginning work-in-process inventory, January 1, 2017		173,000
Total manufacturing costs to account for		957,000
Deduct ending work-in-process inventory, December 31, 2017		145,000
Cost of goods manufactured (to Income Statement)		\$812,000

Carolina Corporation Income Statement Year Ended December 31, 2017 (in thousands)

Revenues		\$1,300,000
Cost of goods sold:		
Beginning finished goods, January 1, 2017	\$ 240,000	
Cost of goods manufactured	812,000	
Cost of goods available for sale	1,052,000	
Ending finished goods, December 31, 2017	206,000	
Cost of goods sold		846,000
Gross margin		454,000
Operating costs:		
Marketing, distribution, and customer-service costs	125,000	
General and administrative costs	71,000	
Total operating costs		196,000
Operating income		\$ 258,000

2-39 Income statement and schedule of cost of goods manufactured. The Howell Corporation has the following account balances (in millions):

For Specific Date

For Year 2017

Direct materials inventory, Jan. 1, $2017 \quad \$ 1 \quad$ Purchases of direct materials $\$ 325$ 5

Work-in-process inventory, Jan. 1, 201710 Direct manufacturing labor 100
Finished goods inventory, Jan. 1, $2017 \quad 70$ Depreciation-plant and equipment 80
Direct materials inventory, Dec. 31, $201720 \quad$ Plant supervisory salaries 5
Work-in-process inventory, Dec. 31, 2017 5 $\begin{aligned} & \text { Miscellaneous plant } \\ & \text { overhead }\end{aligned}$
Finished goods inventory, Dec. 31, 201755 Revenues 950
Marketing, distribution, and
customer-service costs 240
Plant supplies used 10
Plant utilities 30
Indirect manufacturing labor 60

Required:

Prepare an income statement and a supporting schedule of cost of goods manufactured for the
year ended December 31, 2017. (For additional questions regarding these facts, see the next problem.)

SOLUTION

(25-30 min.) Income statement and schedule of cost of goods manufactured.

Howell Corporation
 Income Statement for the Year Ended December 31, 2017
 (in millions)

Revenues		$\$ 950$
Cost of goods sold	$\$ 70$	
\quad Beginning finished goods, Jan. 1, 2017	$\underline{645}$	
\quad Cost of goods manufactured (below)	$\underline{715}$	
\quad Cost of goods available for sale	$\underline{55}$	$\underline{660}$
\quad Ending finished goods, Dec. 31, 2017		$\underline{290}$
Gross margin	$\underline{\underline{\$ 50}}$	
Marketing, distribution, and customer-service costs		
Operating income		

Howell Corporation Schedule of Cost of Goods Manufactured for the Year Ended December 31, 2017
 (in millions)

Direct materials costs
Beginning inventory, Jan. 1, 2017 \$ 15
Purchases of direct materials $\quad 325$
Cost of direct materials available for use 340
Ending inventory, Dec. 31, $2017 \quad 20$
Direct materials used \$320
Direct manufacturing labor costs 100
Indirect manufacturing costs
Indirect manufacturing labor 60
Plant supplies used 10
Plant utilities 30
Depreciation-plant and equipment 80
Plant supervisory salaries 5
Miscellaneous plant overhead $\quad 35 \quad \underline{220}$
Manufacturing costs incurred during 2017
Add beginning work-in-process inventory, Jan. 1, $2017 \quad \underline{10}$
Total manufacturing costs to account for 650
Deduct ending work-in-process, Dec. 31, $2017 \quad 1 \quad 5$
Cost of goods manufactured $\underline{\underline{\$ 645}}$

2-40 Interpretation of statements (continuation of 2-39).

Required:

1. How would the answer to Problem 2-39 be modified if you were asked for a schedule of cost of goods manufactured and sold instead of a schedule of cost of goods manufactured? Be specific.
2. Would the sales manager's salary (included in marketing, distribution, and customer-service costs) be accounted for any differently if the Howell Corporation were a merchandisingsector company instead of a manufacturing-sector company?
3. Using the flow of manufacturing costs outlined in Exhibit 2-9 (page 64), describe how the wages of an assembler in the plant would be accounted for in this manufacturing company.
4. Plant supervisory salaries are usually regarded as manufacturing overhead costs. When might some of these costs be regarded as direct manufacturing costs? Give an example.
5. Suppose that both the direct materials used and the plant and equipment depreciation are related to the manufacture of 1 million units of product. What is the unit cost for the direct materials assigned to those units? What is the unit cost for plant and equipment depreciation? Assume that yearly plant and equipment depreciation is computed on a straight-line basis.
6. Assume that the implied cost-behavior patterns in requirement 5 persist. That is, direct material costs behave as a variable cost and plant and equipment depreciation behaves as a fixed cost. Repeat the computations in requirement 5, assuming that the costs are being predicted for the manufacture of 1.2 million units of product. How would the total costs be affected?
7. As a management accountant, explain concisely to the president why the unit costs differed in requirements 5 and 6.

SOLUTION

(15-20 min.) Interpretation of statements (continuation of 2-39).

1. The schedule in 2-39 can become a Schedule of Cost of Goods Manufactured and Sold simply by including the beginning and ending finished goods inventory figures in the supporting schedule, rather than directly in the body of the income statement. Note that the term cost of goods manufactured refers to the cost of goods brought to completion (finished) during the accounting period, whether they were started before or during the current accounting period. Some of the manufacturing costs incurred are held back as costs of the ending work in process; similarly, the costs of the beginning work in process inventory become a part of the cost of goods manufactured for 2017.
2. The sales manager's salary would be charged as a marketing cost as incurred by both manufacturing and merchandising companies. It is basically a period (operating) cost that appears below the gross margin line on an income statement.
3. An assembler's wages would be assigned to the products worked on. Thus, the wages cost would be charged to Work-in-Process and would not be expensed until the product is transferred through Finished Goods Inventory to Cost of Goods Sold as the product is sold.
4. The direct-indirect distinction can be resolved only with respect to a particular cost object. For example, in defense contracting, the cost object may be defined as a contract. Then, a plant supervisor working only on that contract will have his or her salary charged directly and wholly to that single contract.
5. Direct materials used $=\$ 320,000,000 \div 1,000,000$ units $=\$ 320$ per unit

Depreciation on plant equipment $=\$ 80,000,000 \div 1,000,000$ units $=\$ 80$ per unit
6. Direct materials unit cost would be unchanged at $\$ 320$ per unit. Depreciation cost per unit would be $\$ 80,000,000 \div 1,200,000=\$ 66.67$ per unit. Total direct materials costs would rise by 20% to $\$ 384,000,000$ ($\$ 320$ per unit $\times 1,200,000$ units), whereas total depreciation would be unaffected at $\$ 80,000,000$.
7. Unit costs are averages, and they must be interpreted with caution. The $\$ 320$ direct materials unit cost is valid for predicting total costs because direct materials is a variable cost; total direct materials costs indeed change as output levels change. However, fixed costs like depreciation must be interpreted quite differently from variable costs. A common error in cost analysis is to regard all unit costs as one-as if all the total costs to which they are related are variable costs. Changes in output levels (the denominator) will affect total variable costs, but not total fixed costs. Graphs of the two costs may clarify this point; it is safer to think in terms of total costs rather than in terms of unit costs.

2-41 Income statement and schedule of cost of goods manufactured. The following items (in millions) pertain to Schaeffer Corporation:

Schaeffer's manufacturing costing system uses a three-part classification of direct materials, direct manufacturing labor, and manufacturing overhead costs.

For Specific Date
Work-in-process inventory, $\$ 10$ Jan. 1, 2017
Direct materials inventory, Dec. 31, 2017

Finished-goods inventory, 16 Dec. 31, 2017

Accounts payable, Dec. 31, 24 2017

Accounts receivable, Jan. 1, 53 2017

Work-in-process inventory,
Dec. 31, 2017

For Year 2017
Plant utilities \$ 8

Indirect manufacturing labor 21

Depreciation-plant and 6 equipment
Revenues 359

Miscellaneous manufacturing 15 overhead
Marketing, distribution, and
90 customer-service costs

For Specific Date
$\left.\begin{array}{llll}\begin{array}{c}\text { Finished-goods inventory, } \\ \text { Jan 1, 2017 }\end{array} & 46 & \text { Direct materials purchased } & 88 \\ \begin{array}{c}\text { Accounts receivable, Dec. } \\ 31,2017\end{array} & 32 & \text { Direct manufacturing labor }\end{array}\right] 40$

Required:
Prepare an income statement and a supporting schedule of cost of goods manufactured. (For additional questions regarding these facts, see the next problem.)

SOLUTION

(25-30 min.) Income statement and schedule of cost of goods manufactured.

Schaeffer Corporation

Income Statement
For the Year Ended December 31, 2017
(in millions)

Revenues		$\$ 359$
Cost of goods sold	$\$ 46$	
\quad Beginning finished goods, Jan. 1, 2017		
\quad Cost of goods manufactured (below)	$\underline{224}$	
\quad Cost of goods available for sale	$\underline{270}$	
\quad Ending finished goods, Dec. 31, 2014	$\underline{254}$	
Gross margin		$\underline{105}$
Marketing, distribution, and customer-service costs	$\underline{915}$	
Operating income (loss)		

Schaeffer Corporation Schedule of Cost of Goods Manufactured
For the Year Ended December 31, 2017 (in millions)

Direct material costs
Beginning inventory, Jan. 1, 2017 \$ 34
Direct materials purchased $\quad 88$

Cost of direct materials available for use 122
Ending inventory, Dec. 31, 2017
Direct materials used\$118
Direct manufacturing labor costs
Indirect manufacturing costs

$$
\text { Plant supplies used } 9
$$

Property taxes on plant 2
Plant utilities 8
Indirect manufacturing labor costs 21
Depreciation-plant and equipment 6
Miscellaneous manufacturing overhead costs 15
Manufacturing costs incurred during 201761219
Add beginning work-in-process inventory, Jan. 1, 2017 10
Total manufacturing costs to account for 229
Deduct ending work-in-process inventory, Dec. 31, 2017 5
Cost of goods manufactured (to income statement) $\$ 224$

2-42 Terminology, interpretation of statements (continuation of 2-41).

Required:

1. Calculate total prime costs and total conversion costs.
2. Calculate total inventoriable costs and period costs.
3. Design costs and $R \& D$ costs are not considered product costs for financial statement purposes. When might some of these costs be regarded as product costs? Give an example.
4. Suppose that both the direct materials used and the depreciation on plant and equipment are related to the manufacture of 2 million units of product. Determine the unit cost for the direct materials assigned to those units and the unit cost for depreciation on plant and equipment. Assume that yearly depreciation is computed on a straight-line basis.
5. Assume that the implied cost-behavior patterns in requirement 4 persist. That is, direct material costs behave as a variable cost and depreciation on plant and equipment behaves as a fixed cost. Repeat the computations in requirement 4 , assuming that the costs are being predicted for the manufacture of 3 million units of product. Determine the effect on total costs.
6. Assume that depreciation on the equipment (but not the plant) is computed based on the number of units produced because the equipment deteriorates with units produced. The depreciation rate on equipment is $\$ 1.50$ per unit. Calculate the depreciation on equipment assuming (a) 2 million units of product are produced and (b) 3 million units of product are produced.

SOLUTION

(15-20 min.) Terminology, interpretation of statements (continuation of 2-36).

1. Direct materials used
\$118 million
Direct manufacturing labor costs

Prime costs

Direct manufacturing labor costs
Indirect manufacturing costs
Conversion costs
2. Inventoriable costs (in millions) for Year 2017

Plant utilities
Indirect manufacturing labor
Depreciation-plant and equipment
Miscellaneous manufacturing overhead
Direct materials used
Direct manufacturing labor
Plant supplies used
Property taxes on plant
Total inventoriable costs
Period costs (in millions) for Year 2017
Marketing, distribution, and customer-service costs
\$158 million
\$ 40 million
61 million
\$101 million
\$ 8
21
6
15
118
40
9
2
$\$ 219$
$\$ 90$
3. Design costs and R\&D costs may be regarded as product costs in case of contracting with a governmental agency. For example, if the Air Force negotiated to contract with Lockheed to build a new type of supersonic fighter plane, design costs and R\&D costs may be included in the contract as product costs.
4. Direct materials used $=\$ 118,000,000 \div 2,000,000$ units $=\$ 59$ per unit

Depreciation on plant and equipment $=\$ 6,000,000 \div 2,000,000$ units $=\$ 3$ per unit
5. Direct materials unit cost would be unchanged at $\$ 59$. Depreciation unit cost would be $\$ 6,000,000 \div 3,000,000=\$ 2$ per unit. Total direct materials costs would increase by 50% to $\$ 177,000,000$ ($\$ 59$ per unit $\times 3,000,000$ units). Total depreciation cost of $\$ 6,000,000$ would remain unchanged.
6. In this case, equipment depreciation is a variable cost in relation to the unit output. The amount of equipment depreciation will change in direct proportion to the number of units produced.
(a) Depreciation will be $\$ 3$ million ($\$ 1.50 \times 2$ million) when 2 million units are produced.
(b) Depreciation will be $\$ 4.5$ million ($\$ 1.50 \times 3$ million) when 3 million units are produced.

2-43 Labor cost, overtime, and idle time. Akua works in the manufacturing department of Impala Iron Work (IIW) as a machine operator. Akua, a long-time employee of IIO, is paid on an hourly basis at a rate of $\$ 25$ per hour. She works five 8 -hour shifts per week from Monday to Friday (40 hours). Any time Akua works beyond these 40 hours is considered overtime for which she is paid at a rate of 160% ($\$ 40$ per hour). If the overtime falls on weekends, Akua is paid at a rate of double time ($\$ 50$ per hour). She is also paid an additional $\$ 26$ per hour for working on any holidays worked, even if it is part of her regular 40 hours. Akua is paid her regular wages even if the machines are down (not operating) due to regular machine maintenance, slow order
periods, or unexpected mechanical problems. These hours are considered "idle time."
During December Akua worked the following hours:

Hours worked including

 machine downtime Machine downtime| Week 1 | 49 | 5.0 |
| :--- | :--- | :--- |
| Week 2 | 51 | 6.0 |
| Week 3 | 45 | 3.0 |
| Week 4 | 47 | 4.0 |

Included in the total hours worked are two company holidays (Christmas Eve and Christmas Day) during Week 4. All overtime worked by Akua was Monday-Friday, except for the hours worked in Week 3; all of the Week 3 overtime hours were worked on a Saturday.

Required:

1. Calculate (a) direct manufacturing labor, (b) idle time, (c) overtime and holiday premium, and (d) total earnings for Akua in December.
2. Is idle time and overtime premium a direct or indirect cost of the products that Akua worked on in December? Explain.

SOLUTION

(20 min.) Labor cost, overtime and idle time.
1.(a) Total cost of hours worked at regular rates
49 hours $\times \$ 25$ per hour \$1,225
51 hours $\times \$ 25$ per hour 1,275
45 hours $\times \$ 25$ per hour 1,125
47 hours $\times \$ 25$ per hour 1,175\$4,800
Minus idle time
(5.0 hours $\times \$ 25$ per hour) 125
(6.0 hours $\times \$ 25$ per hour) 150
(3.0 hours $\times \$ 25$ per hour) 75
(4.0 hours $\times \$ 25$ per hour) 100
Total idle time 450
Direct manufacturing labor costs \$4,350
(b) Idle time $=18$ hours $\times \$ 25$ per hour $=$ $\$ 450$
(c) Overtime and holiday premium.
Week 1: Overtime $(49-40)$ hours \times Premium, $\$ 15$ per hour \$ 135
Week 2: Overtime ($51-40$) hours \times Premium, $\$ 15$ per hour 165
Week 3: Overtime $(45-40)$ hours \times Premium, $\$ 25$ per hour 125

Week 4: Overtime $(47-40)$ hours \times Premium, $\$ 15$ per hour	105
Week 4: Holiday 8 hours $\times 2$ days \times Premium, $\$ 26$ per hour	$\underline{416}$
Total overtime and holiday premium	$\underline{\underline{\$ 946}}$
(d) Total earnings in December	
Direct manufacturing labor costs	$\$ 4,350$
Idle time	450
Overtime and holiday premium	$\underline{946}$
Total earnings	$\underline{\$ 5,746}$

2. Idle time caused by regular machine maintenance, slow order periods, or unexpected mechanical problems is an indirect cost of the product because it is not related to a specific product.

Overtime premium caused by the heavy overall volume of work is also an indirect cost because it is not related to a particular job that happened to be worked on during the overtime hours. If, however, the overtime is the result of a demanding "rush job," the overtime premium is a direct cost of that job.

2-44 Missing records, computing inventory costs. Ron Howard recently took over as the controller of Johnson Brothers Manufacturing. Last month, the previous controller left the company with little notice and left the accounting records in disarray. Ron needs the ending inventory balances to report first-quarter numbers.

For the previous month (March 2017) Ron was able to piece together the following information:

Direct materials purchased	$\$ 120,000$
Work-in-process inventory, $3 / 1 / 2017$	$\$ 35,000$
Direct materials inventory, $3 / 1 / 2017$	$\$ 12,500$
Finished-goods inventory, $3 / 1 / 2017$	$\$ 160,000$
Conversion costs	$\$ 330,000$
Total manufacturing costs added during	$\$ 420,000$
the period	4 times direct materials used
Cost of goods manufactured	20%
Gross margin as a percentage of revenues	$\$ 518,750$
Revenues	
late the cost of:	
red:	
nished-goods inventory, $3 / 31 / 2017$	

SOLUTION

(30-40 min.) Missing records, computing inventory costs.

1. Finished goods inventory, $3 / 31 / 2017=\$ 105,000$
2. Work-in-process inventory, $3 / 31 / 2017=\$ 95,000$
3. Direct materials inventory, $3 / 31 / 2017=\$ 42,500$

This problem is not as easy as it first appears. These answers are obtained by working from the known figures to the unknowns in the schedule below. The basic relationships between categories of costs are:

$$
\begin{array}{ll}
\text { Manufacturing costs added during the period (given) } & \$ 420,000 \\
\text { Conversion costs (given) } & \$ 330,000
\end{array}
$$

Direct materials used $=$ Manufacturing costs added - Conversion costs

$$
=\$ 420,000-\$ 330,000=\$ 90,000
$$

Cost of goods manufactured $=$ Direct Materials Used $\times 4$

$$
=\$ 90,000 \times 4=\$ 360,000
$$

Schedule of Computations

Direct materials inventory, 3/1/2017 (given)		\$ 12,500
Direct materials purchased (given)		120,000
Direct materials available for use		132,500
Direct materials inventory, 3/31/2017	$3=$	42,500
Direct materials used		90,000
Conversion costs (given)		330,000
Manufacturing costs added during the period (given)		420,000
Add work in process inventory, 3/1/2017 (given)		35,000
Manufacturing costs to account for		455,000
Deduct work in process inventory, 3/31/2017	$2=$	95,000
Cost of goods manufactured ($4 \times \$ 90,000$)		360,000
Add finished goods inventory, 3/1/2017		160,000
Cost of goods available for sale		520,000
Deduct finished goods inventory, 3/31/2017	$1=$	105,000
Cost of goods sold ($80 \% \times \$ 518,750$)		\$415,000

Some instructors may wish to place the key amounts in a Work in Process T-account. This problem can be used to introduce students to the flow of costs through the general ledger (amounts in thousands):

Cost of

End Inv	95			
End Inv	105			

2-45 Comprehensive problem on unit costs, product costs. Atlanta Office Equipment manufactures and sells metal shelving. It began operations on January 1, 2017. Costs incurred for 2017 are as follows (V stands for variable; F stands for fixed):

Direct materials used
Direct manufacturing labor costs
Plant energy costs
Indirect manufacturing labor costs
Indirect manufacturing labor costs
Other indirect manufacturing costs
Other indirect manufacturing costs
Marketing, distribution, and customer-service costs
Marketing, distribution, and customer-service costs
Administrative costs
\$ 149,500 V
34,500 V $6,000 \mathrm{~V}$
$12,000 \mathrm{~V}$
17,000 F
7,000 V
27,000 F
$126,000 \mathrm{~V}$
47,000 F
58,000 F

Variable manufacturing costs are variable with respect to units produced. Variable marketing, distribution, and customer-service costs are variable with respect to units sold.
Inventory data are as follows:

Beginning: January 1, 2014
Direct materials
Work in process
Finished goods

0 lb
0 units
0 units

Ending: December 31, 2014
2,300 lbs
0 units
? units

Production in 2017 was 115,000 units. Two pounds of direct materials are used to make one unit of finished product.
Revenues in 2017 were $\$ 540,000$. The selling price per unit and the purchase price per pound of direct materials were stable throughout the year. The company's ending inventory of finished goods is carried at the average unit manufacturing cost for 2017. Finished-goods inventory at December 31, 2017, was $\$ 15,400$.

Required:

1. Calculate direct materials inventory, total cost, December 31, 2017.
2. Calculate finished-goods inventory, total units, December 31, 2017.
3. Calculate selling price in 2017.
4. Calculate operating income for 2017.

SOLUTION

(30 min.) Comprehensive problem on unit costs, product costs.

1. If 2 pounds of direct materials are used to make each unit of finished product, 115,000 units \times 2 lbs., or $230,000 \mathrm{lbs}$. were used at $\$ 0.65$ per pound of direct materials ($\$ 149,500 \div 230,000$ lbs.). (The direct material costs of $\$ 149,500$ are direct materials used, not purchased.) Therefore, the ending inventory of direct materials is $2,300 \mathrm{lbs} . \times \$ 0.65=\$ 1,495$.
2.

Manufacturing Costs for 115,000 units
Direct materials costs

Variable	Fixed	Total
$\$ 149,500$	$\$$	$\$ 149,500$
34,500	-	34,500
6,000	-	6,000
12,000	17,000	29,000
7,000	27,000	34,000
$\$ 209,000$	$\$ 44,000$	$\$ 253,000$

Average unit manufacturing cost:

Finished goods inventory in units:
$\$ 253,000 \div 115,000$ units
$=\$ 2.20$ per unit \$15,400 (given)
$=\$ 2.20$ per unit
$=7,000$ units
3. Units sold in $2014=$ Beginning inventory + Production - Ending inventory

$$
=0+115,000-7,000=108,000 \text { units }
$$

Selling price in $2014=\$ 540,000 \div 108,000$
$=\$ 5.00$ per unit
4.

Atlanta Office Equipment Income Statement
 Year Ended December 31, 2017 (in thousands)

Revenues (108,000 units sold $\times \$ 5.00$)
Cost of units sold:
Beginning finished goods, Jan. 1, 2017 \$ 0
Cost of goods manufactured 253,000
Cost of goods available for sale 253,000

Ending finished goods, Dec. 31, $2017 \quad 15,400$
Gross margin
237,600
Operating costs:
Marketing, distribution, and customer-service costs (\$126,000 + \$47,000)
Administrative costs 173,000 58,000
Operating income

Note: Although not required, the full set of unit variable costs is:

Direct materials cost (\$0.65 $\times 2 \mathrm{lbs}$.)	\$1.3	
Direct manufacturing labor cost (\$34,500 $\div 115,000$)	0.30	
Plant energy cost (\$6,000 $\div 115,000$)	0.05 =	$\begin{aligned} & \$ 1.817 \text { per } \\ & \text { manufactured } \end{aligned}$
Indirect manufacturing labor cost $(\$ 12,000 \div$ $115,000)$	0.10	
Other indirect manufacturing cost $(\$ 7,000 \div$ 115,000)	0.06	
Marketing, distribution, and customer-service costs	\$1.0 per	sold

2-46 Different meanings of product costs. There are at least 3 different purposes for which we measure product costs. They are (1) pricing and product mix decisions, (2) determining the appropriate charge for a government contract, and (3) for preparing financial statements for external reporting following Generally Accepted Accounting Principles. On the following table, indicate whether the indicated cost would be included or excluded for the particular purpose. If your answer is not definitive (include or exclude), provide a short explanation of why.

	Purpose: Pricing/Product Mix	Purpose: Government Contract	Purpose: Financial Statement (using GAAP)

Direct Material
Direct
Manufacturing
Labor
Manufacturing
Overhead
Marketing Costs
Distribution
Expense
Customer Service

SOLUTION

(15 min.) Different meanings of product costs
\square

Type of Cost	Purpose: Pricing/Product Mix	Purpose: Government Contract	Financial Statement (using GAAP)
Direct materials	Include	Include	Include
Direct manufacturing labor	Include	Include	Include
Manufacturing overhead	Include	Include	Include
Marketing costs	Include	Exclude*	Exclude
Distribution expense	Include	Exclude*	Exclude
Customer service	Include	Exclude*	Exclude

* - These costs are generally excluded but may be included if specifically required for a specific contract.

2-47 Cost classification; ethics. Adalard Müller, the new plant manager of New Times Manufacturing Plant Number 12, has just reviewed a draft of his year-end financial statements. Hand receives a year-end bonus of 8% of the plant's operating income before tax. The year-end income statement provided by the plant's controller was disappointing to say the least. After reviewing the numbers, Müller demanded that his controller go back and "work the numbers" again. Müller insisted that if he didn't see a better operating income number the next time around he would be forced to look for a new controller.

New Times Manufacturing classifies all costs directly related to the manufacturing of its product as product costs. These costs are inventoried and later expensed as costs of goods sold when the product is sold. All other expenses, including finished goods warehousing costs of $\$ 3,570,000$, are classified as period expenses. Müller had suggested that warehousing costs be included as product costs because they are "definitely related to our product." The company produced 210,000 units during the period and sold 190,000 units.

As the controller reworked the numbers, he discovered that if he included warehousing costs as product costs, he could improve operating income by $\$ 340,000$. He was also sure these new numbers would make Müller happy.

Required:

1. Show numerically how operating income would improve by $\$ 340,000$ just by classifying the preceding costs as product costs instead of period expenses.
2. Is Müller correct in his justification that these costs are "definitely related to our product"?
3. By how much will Hand profit personally if the controller makes the adjustments in requirement 1 ?
4. What should the plant controller do?

SOLUTION

(20-25 min.) Classification of costs; ethics.

1. Warehousing costs per unit $=\frac{\text { Warehousing costs }}{\text { Units produced }}$
$=\frac{\$ 3,570,000}{210,000 \text { units }}=\$ 17$ per unit.

If the $\$ 3,570,000$ is treated as period costs, the entire amount would be expensed during the year as incurred. If it is treated as a product cost, it would be "unitized" at $\$ 17$ per unit and expensed as each unit of the product is sold. Therefore, if only 190,000 of the 210,000 units are sold, only $\$ 3,230,000$ ($\$ 17$ per unit $\times 190,000$ units) of the $\$ 3,570,000$ would be expensed in the current period. The remaining $\$ 3,570,000-\$ 3,230,000=\$ 340,000$ would be inventoried on the balance sheet until a later period when the units are sold. The value of finished goods inventory can also be calculated directly to be $\$ 340,000$ ($\$ 17$ per unit $\times 20,000$ units).
2. No. With respect to classifying costs as product or period costs, this determination is made by GAAP. It is not something that can be justified by the plant manager or plant controller. Even though these costs are in fact related to the product, they are not direct costs of manufacturing the product. GAAP requires that research and development, as well as all costs related to warehousing and distribution of goods, be classified as period costs and expensed in the period they are incurred.
3. Adalard Müller would improve his personal bonus and take-home pay by $8 \% \times \$ 340,000=\$ 27,200$
4. The controller should not reclassify costs as product costs just so the plant can reap shortterm benefits, including the increase in Müller's personal year-end bonus. Research and development costs, costs related to the shipping of finished goods, and costs related to warehousing finished goods are all period costs under GAAP and must be treated as such. Changing this classification on New Time's financial statements would violate GAAP and would likely be considered fraudulent. The idea of costs being classified as product costs versus period costs is to properly reflect on the income statement those costs that are directly related to manufacturing (costs incurred to transform one asset, direct materials into another asset, finished goods) and to properly reflect on the balance sheet those costs that will provide a future benefit (inventory). The controller should not be intimidated by Müller. Müller stands to personally benefit from the reclassification of costs. The controller should insist that he must adhere to GAAP so as not to submit fraudulent financial statements to corporate headquarters. If Müller insists on the reclassification, the controller should raise the issue with the chief financial officer after informing Müller that he is doing so. If, after taking all these steps, there is continued pressure to modify the numbers, the controller should consider resigning from the company rather than engage in unethical behavior.

2-48 Finding unknown amounts. An auditor for the Internal Revenue Service is trying to reconstruct some partially destroyed records of two taxpayers. For each case in the accompanying list, find the unknown elements designated by the letters A and B for Case 1 and C and D for Case 2.

Case 1
Case 2
(in thousands)

Accounts receivable, $12 / 31$	$\$ 10,250$	$\$ 4,500$
Cost of goods sold	A	33,400
Accounts payable, $1 / 1$	5,900	2,850
Accounts payable, $12 / 31$	2,700	2,250
Finished goods inventory, 12/31	B	6,300
Gross margin	26,000	C
Work-in-process inventory, 1/1	4,600	2,800
Work-in-process inventory, $12 / 31$	2,300	5,500
Finished goods inventory, $1 / 1$	6,600	5,100
Direct materials used	14,500	20,200
Direct manufacturing labor costs	5,200	7,300
Manufacturing overhead costs	10,400	D
Purchases of direct materials	13,500	10,500
Revenues	64,500	57,600
Accounts receivable, $1 / 1$	6,400	3,200

SOLUTION

(20-25 min.) Finding unknown amounts.

Let $G=$ given, $I=$ inferred

Step 1: Use gross margin formula
Revenues
Cost of goods sold
Gross margin

	Case 1		Case 2	
	$\$ 64,500$	G	$\$ 57,600$	G
A	$\underline{38,500}$	I	$\underline{33,400}$	G
	$\underline{\$ 26,000}$	G	$\underline{\$ 24,200}$	I

Step 2: Use schedule of cost of goods manufactured formula

Direct materials used
Direct manufacturing labor costs
Indirect manufacturing costs
Manufacturing costs incurred
Add beginning work in process, 1/1
Total manufacturing costs to account for
Deduct ending work in process, 12/31
Cost of goods manufactured

$\$ 14,500$	G	$\$ 20,200$	G
5,200	G	7,300	G
$\underline{10,400}$	G	$\underline{9,800}$	I
$\underline{30,100}$	I	37,300	I
$\underline{4,600}$	G	$\underline{2,800}$	G
$\underline{34,700}$	I	40,100	I
$\underline{2,300}$	G	$\underline{5,500}$	G
$\underline{32,400}$	I	$\underline{34,600}$	I

Step 3: Use cost of goods sold formula

Beginning finished goods inventory, $1 / 1$	600			G
5,100	G			
Cost of goods manufactured	$\underline{32,400}$	I	$\underline{34,600}$	I
Cost of goods available for sale		39,000	I	$\underline{39,700}$
I				
Ending finished goods inventory, 12/31	B	$\underline{500}$	I	$\underline{6,300}$
Cost of goods sold	$\underline{\underline{38,500}}$	I	$\underline{33,400}$	G

For case 1, do steps 1, 2, and 3 in order.
For case 2, do steps 1, 3, and then 2.

Try It 2-1 Solution

The following table shows the total costs of gasoline and insurance and the cost per mile if the truck is driven (a) 20,000 miles and (b) 30,000 miles.

Number of Miles Driven $\mathbf{(1)}$	Variable Gasoline Costs	Fixed Insurance Costs $(\mathbf{2})=\$ \mathbf{0 . 1 5} \times(\mathbf{1})$	Total Costs	Cost per Mile
20,000	$\$ 3,000$	$\$ 6,000$	$\mathbf{(4)}=(\mathbf{2})+\mathbf{(3)}$	$\mathbf{(5)}=\mathbf{(\mathbf { 4 }) \div (\mathbf { 1 })}$
30,000	4,500	6,000	$\$ 9,000$	$\$ 0.45$
			10,500	0.35

Try It 2-2 Solution

We first calculate the cost of direct materials used and then total manufacturing costs incurred in 2017.

The cost of direct materials used is:
Beginning inventory of direct materials, January 1, 2017

+ Purchases of direct materials in 2017
- Ending inventory of direct materials, December 31, 2017
= Direct materials used in 2017
Total manufacturing costs incurred refers to all direct manufacturing costs and manufacturing overhead costs incurred during 2017 for all goods worked on during the year. Diana Corporation classifies its manufacturing costs into the three categories described earlier.
(i) Direct materials used in $2017 \quad \$ 90,000$
(ii) Direct manufacturing labor costs in 2017

30,000
(iii) Manufacturing overhead costs in 2017

Total manufacturing costs incurred in 2017
\$160,000

Try It 2-3 Solution

(a) Cost of goods manufactured refers to the cost of goods brought to completion, whether they were started before or during the current accounting period. Some of the manufacturing costs incurred during 2017 are held back as the cost of the ending work-in-process inventory.

The cost of goods manufactured in 2017 for Diana Corporation is calculated as follows:
Beginning work-in-process inventory, January 1, 2017
\$ 9,000

+ Total manufacturing costs incurred in $2017 \quad \underline{160,000}$
$=$ Total manufacturing costs to account for
- Ending work-in-process inventory, December 31, 2017

169,000
$=$ Cost of goods manufactured in 2017
8,000
\$161,000
(b) The cost of goods sold is the cost of finished goods inventory sold to customers during the current accounting period. Cost of goods sold is an expense that is matched against revenues. The cost of goods sold in 2017 for Diana Corporation is calculated as follows:
Beginning inventory of finished goods, January 1, 2017

+ Cost of goods manufactured in 2017
- Ending inventory of finished goods, December 31, 2017

21,000
$=$ Cost of goods sold in 2017
\$155,000

